15 resultados para waste water management

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phenomenological transition film evaporation model was introduced to a pore network model with the consideration of pore radius, contact angle, non-isothermal interface temperature, microscale fluid flows and heat and mass transfers. This was achieved by modeling the transition film region of the menisci in each pore throughout the porous transport layer of a half-cell polymer electrolyte membrane (PEM) fuel cell. The model presented in this research is compared with the standard diffusive fuel cell modeling approach to evaporation and shown to surpass the conventional modeling approach in terms of predicting the evaporation rates in porous media. The current diffusive evaporation models used in many fuel cell transport models assumes a constant evaporation rate across the entire liquid-air interface. The transition film model was implemented into the pore network model to address this issue and create a pore size dependency on the evaporation rates. This is accomplished by evaluating the transition film evaporation rates determined by the kinetic model for every pore containing liquid water in the porous transport layer (PTL). The comparison of a transition film and diffusive evaporation model shows an increase in predicted evaporation rates for smaller pore sizes with the transition film model. This is an important parameter when considering the micro-scaled pore sizes seen in the PTL and becomes even more substantial when considering transport in fuel cells containing an MPL, or a large variance in pore size. Experimentation was performed to validate the transition film model by monitoring evaporation rates from a non-zero contact angle water droplet on a heated substrate. The substrate was a glass plate with a hydrophobic coating to reduce wettability. The tests were performed at a constant substrate temperature and relative humidity. The transition film model was able to accurately predict the drop volume as time elapsed. By implementing the transition film model to a pore network model the evaporation rates present in the PTL can be more accurately modeled. This improves the ability of a pore network model to predict the distribution of liquid water and ultimately the level of flooding exhibited in a PTL for various operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of climate change are expected to be very severe in arid regions. The Sonora River Basin, in the northwestern state of Sonora, Mexico, is likely to be severely affected. Some of the anticipated effects include precipitation variability, intense storm events, higher overall temperatures, and less available water. In addition, population in Sonora, specifically the capital city of Hermosillo, is increasing at a 1.5% rate and current populations are near 700,000. With the reduction in water availability and an increase in population, Sonora, Mexico is expected to experience severe water resource issues in the near future. In anticipation of these changes, research is being conducted in an attempt to improve water management in the Sonora River Basin, located in the northwestern part of Sonora. This research involves participatory modeling techniques designed to increase water manager awareness of hydrological models and their use as integrative tools for water resource management. This study was conducted as preliminary research for the participatory modeling grant in order to gather useful information on the population being studied. This thesis presents research from thirty-four in-depth interviews with water managers, citizens, and agricultural producers in Sonora, Mexico. Data was collected on perceptions of water quantity and quality in the basin, thoughts on current water management practices, perceptions of climate change and its management, experience with, knowledge of, and trust in hydrological models as water management tools. Results showed that the majority of interviewees thought there was not enough water to satisfy their daily needs. Most respondents also agreed that the water available was of good quality, but that current management of water resources was ineffective. Nearly all interviewees were aware of climate change and thought it to be anthropogenic. May reported experiencing higher temperatures, precipitation changes, and higher water scarcity and attributed those fluctuations to climate change. 65% of interviewees were at least somewhat familiar with hydrological models, though only 28% had ever used them or their output. Even with model usage results being low, 100% of respondents believed hydrological models to be very useful water management tools. Understanding how water, climate change, and hydrological models are perceived by this population of people is essential to improving their water management practices in the face of climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More than 1 billion people lack access to clean water and proper sanitation. As part of efforts to solve this problem, there is a growing shift from public to private water management led by The World Bank and the International Monetary Fund (IMF). This shift has inspired much related research. Researchers have assessed water privatization related perceptions of consumers, government officials, and multinational company agents. This thesis presents results of a study of nongovernmental (NGO) staff perceptions of water privatization. Although NGOs are important actors in sustainable water related development through water provision, we have little understanding of their perceptions of water privatization and how it impacts their activities. My goal was to fill this gap. I sampled international and national development NGOs with water, sanitation, and hygiene (WASH) foci. I conducted 28 interviews between January and June of 2011 with staff in key positions including water policy analysts, program officers, and project coordinators. Their perceptions of water privatization were mixed. I also found that local water privatization in most cases does not influence NGO decisions to conduct projects in a region. I found that development NGO staff base their beliefs about water privatization on a mix of personal experience and media coverage. My findings have important implications for the WASH sector as we work to solve the worsening global water access crisis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research initiative was triggered by the problems of water management of Polymer Electrolyte Membrane Fuel Cell (PEMFC). In low temperature fuel cells such as PEMFC, some of the water produced after the chemical reaction remains in its liquid state. Excess water produced by the fuel cell must be removed from the system to avoid flooding of the gas diffusion layers (GDL). The GDL is responsible for the transport of reactant gas to the active sites and remove the water produced from the sites. If the GDL is flooded, the supply gas will not be able to reach the reactive sites and the fuel cell fails. The choice of water removal method in this research is to exert a variable asymmetrical force on a liquid droplet. As the drop of liquid is subjected to an external vibrational force in the form of periodic wave, it will begin to oscillate. A fluidic oscillator is capable to produce a pulsating flow using simple balance of momentum fluxes between three impinging jets. By connecting the outputs of the oscillator to the gas channels of a fuel cell, a flow pulsation can be imposed on a water droplet formed within the gas channel during fuel cell operation. The lowest frequency produced by this design is approximately 202 Hz when a 20 inches feed-back port length was used and a supply pressure of 5 psig was introduced. This information was found by setting up a fluidic network with appropriate data acquisition. The components include a fluidic amplifier, valves and fittings, flow meters, a pressure gage, NI-DAQ system, Siglab®, Matlab software and four PCB microphones. The operating environment of the water droplet was reviewed, speed of the sound pressure which travels down the square channel was precisely estimated, and measurement devices were carefully selected. Applicable alternative measurement devices and its application to pressure wave measurement was considered. Methods for experimental setup and possible approaches were recommended, with some discussion of potential problems with implementation of this technique. Some computational fluid dynamic was also performed as an approach to oscillator design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Much of the research in the field of participatory modeling (PM) has focused on the developed world. Few cases are focused on developing regions, and even fewer on Latin American developing countries. The work that has been done in Latin America has often involved water management, often specifically involving water users, and has not focused on the decision making stage of the policy cycle. Little work has been done to measure the effect PM may have on the perceptions and beliefs of decision makers. In fact, throughout the field of PM, very few attempts have been made to quantitatively measure changes in participant beliefs and perceptions following participation. Of the very few exceptions, none have attempted to measure the long-term change in perceptions and beliefs. This research fills that gap. As part of a participatory modeling project in Sonora, Mexico, a region with water quantity and quality problems, I measured the change in beliefs among participants about water models: ability to use and understand them, their usefulness, and their accuracy. I also measured changes in beliefs about climate change, and about water quantity problems, specifically the causes, solutions, and impacts. I also assessed participant satisfaction with the process and outputs from the participatory modeling workshops. Participants were from water agencies, academic institutions, NGOs, and independent consulting firms. Results indicated that participant comfort and self-efficacy with water models, their beliefs in the usefulness of water models, and their beliefs about the impact of water quantity problems changed significantly as a result of the workshops. I present my findings and discuss the results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The International Space Station (ISS) requires a substantial amount of potable water for use by the crew. The economic and logistic limitations of transporting the vast amount of water required onboard the ISS necessitate onboard recovery and reuse of the aqueous waste streams. Various treatment technologies are employed within the ISS water processor to render the waste water potable, including filtration, ion exchange, adsorption, and catalytic wet oxidation. The ion exchange resins and adsorption media are combined in multifiltration beds for removal of ionic and organic compounds. A mathematical model (MFBMODEL™) designed to predict the performance of a multifiltration (MF) bed was developed. MFBMODEL consists of ion exchange models for describing the behavior of the different resin types in a MF bed (e.g., mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins) and an adsorption model capable of predicting the performance of the adsorbents in a MF bed. Multicomponent ion exchange ii equilibrium models that incorporate the water formation reaction, electroneutrality condition, and degree of ionization of weak acids and bases for mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins were developed and verified. The equilibrium models developed use a tanks-inseries approach that allows for consideration of variable influent concentrations. The adsorption modeling approach was developed in related studies and application within the MFBMODEL framework was demonstrated in the Appendix to this study. MFBMODEL consists of a graphical user interface programmed in Visual Basic and Fortran computational routines. This dissertation shows MF bed modeling results in which the model is verified for a surrogate of the ISS waste shower and handwash stream. In addition, a multicomponent ion exchange model that incorporates mass transfer effects was developed, which is capable of describing the performance of strong acid cation (SAC) and strong base anion (SBA) exchange resins, but not including reaction effects. This dissertation presents results showing the mass transfer model's capability to predict the performance of binary and multicomponent column data for SAC and SBA exchange resins. The ion exchange equilibrium and mass transfer models developed in this study are also applicable to terrestrial water treatment systems. They could be applied for removal of cations and anions from groundwater (e.g., hardness, nitrate, perchlorate) and from industrial process waters (e.g. boiler water, ultrapure water in the semiconductor industry).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water management in the porous media of proton exchange membrane (PEM) fuel cells, catalyst layer and porous transport layers (PTL) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. The data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited to porosimetry. A new method and apparatus for measuring the percolation pressure in the catalyst layer has been developed. The experimental setup is similar to a Hele-Shaw experiment where samples are compressed and a fluid is injected into the sample. Pressure-Wetted Volume plots as well as Permeability plots for the catalyst layers were generated from the percolation testing. PTL samples were also characterizes using a Hele-Shaw method. Characterization for the PTLs was completed for the three states: new, conditioned and aged. This is represented in a Ce-t* plots, which show a large offset between new and aged samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water springs are the principal source of water for many localities in Central America, including the municipality of Concepción Chiquirichapa in the Western Highlands of Guatemala. Long-term monitoring records are critical for informed water management as well as resource forecasting, though data are scarce and monitoring in low-resource settings presents special challenges. Spring discharge was monitored monthly in six municipal springs during the author’s Peace Corps assignment, from May 2011 to March 2012, and water level height was monitored in two spring boxes over the same time period using automated water-level loggers. The intention of this approach was to circumvent the need for frequent and time-intensive manual measurement by identifying a fixed relationship between discharge and water level. No such relationship was identified, but the water level record reveals that spring yield increased for four months following Tropical Depression 12E in October 2011. This suggests that the relationship between extreme precipitation events and long-term water spring yields in Concepción should be examined further. These limited discharge data also indicate that aquifer baseflow recession and catchment water balance could be successfully characterized if a long-term discharge record were established. This study also presents technical and social considerations for selecting a methodology for spring discharge measurement and highlights the importance of local interest in conducting successful community-based research in intercultural low-resource settings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The existence and morphology, as well as the dynamics of micro-scale gas-liquid interfaces is investigated numerically and experimentally. These studies can be used to assess liquid management issues in microsystems such as PEMFC gas flow channels, and are meant to open new research perspectives in two-phase flow, particularly in film deposition on non-wetting surfaces. For example the critical plug volume data can be used to deliver desired length plugs, or to determine the plug formation frequency. The dynamics of gas-liquid interfaces, of interest for applications involving small passages (e.g. heat exchangers, phase separators and filtration systems), was investigated using high-speed microscopy - a method that also proved useful for the study of film deposition processes. The existence limit for a liquid plug forming in a mixed wetting channel is determined by numerical simulations using Surface Evolver. The plug model simulate actual conditions in the gas flow channels of PEM fuel cells, the wetting of the gas diffusion layer (GDL) side of the channel being different from the wetting of the bipolar plate walls. The minimum plug volume, denoted as critical volume is computed for a series of GDL and bipolar plate wetting properties. Critical volume data is meant to assist in the water management of PEMFC, when corroborated with experimental data. The effect of cross section geometry is assessed by computing the critical volume in square and trapezoidal channels. Droplet simulations show that water can be passively removed from the GDL surface towards the bipolar plate if we take advantage on differing wetting properties between the two surfaces, to possibly avoid the gas transport blockage through the GDL. High speed microscopy was employed in two-phase and film deposition experiments with water in round and square capillary tubes. Periodic interface destabilization was observed and the existence of compression waves in the gas phase is discussed by taking into consideration a naturally occurring convergent-divergent nozzle formed by the flowing liquid phase. The effect of channel geometry and wetting properties was investigated through two-phase water-air flow in square and round microchannels, having three static contact angles of 20, 80 and 105 degrees. Four different flow regimes are observed for a fixed flow rate, this being thought to be caused by the wetting behavior of liquid flowing in the corners as well as the liquid film stability. Film deposition experiments in wetting and non-wetting round microchannels show that a thicker film is deposited for wetting conditions departing from the ideal 0 degrees contact angle. A film thickness dependence with the contact angle theta as well as the Capillary number, in the form h_R ~ Ca^(2/3)/ cos(theta) is inferred from scaling arguments, for contact angles smaller than 36 degrees. Non-wetting film deposition experiments reveal that a film significantly thicker than the wetting Bretherton film is deposited. A hydraulic jump occurs if critical conditions are met, as given by a proposed nondimensional parameter similar to the Froude number. Film thickness correlations are also found by matching the measured and the proposed velocity derived in the shock theory. The surface wetting as well as the presence of the shock cause morphological changes in the Taylor bubble flow.