2 resultados para volume I
em Digital Commons - Michigan Tech
Resumo:
Red pine (Pinus resinosa Ait.) plantations have been established in Michigan with expectations of mixed final product goals: pulpwood, boltwood and possibly sawlogs. The effects of alternative treatments on tree and stand attributes were examined in: the Atlantic Mine trial, thinned in spring 2006 with three alternatives: (1) every fifth row removal plus crown thinning, (2) every third row removal plus crown thinning and (3) every third row removal plus thinning from below; the Crane Lake trial, thinned in fall 2004 with two alternatives: (1) every third row removal and (2) every third row removal plus thinning from above; the Middle Branch East trial, thinned in fall 2004 with two alternatives: (1) every third row removal plus one in three remaining trees and (2) every third row removal plus one in five remaining trees. All trials included control plots where no thinning was applied. The trials were established in the field as a randomized complete block experiments, in which individual trees were measured in 3-4 fixed-area plots located within each treatment unit. Growth responses of diameter at breast height, height, live crown length, stand basal area and stand volume were examined along with their increments. The Tukey multiple comparison test was used to detect significant differences between treatments in their effect on tree growth response. The results showed that diameter increment increased with increasing thinning intensity and was significantly larger in thinned plots compared to unthinned. Treatments did not substantially affect average tree height increment. Stand basal area increment was significantly larger in the control plot only the year after the harvest. Volume increment was significantly larger in controls, but did not differ considerably among remaining treatments. However, the ratio of volume increment to standing volume was significantly smaller in unthinned plots compared to thinned. Since thinning treatments in all trials hardly ever differed significantly in their effect on stand growth response, mainly due to the relatively short time of the evaluation, heavier thinnings should be favored due to higher volume increment rates and shorter time needed to reach desirable diameters. Nevertheless, economic evaluation based on obtained results will be conducted in the future in order to make final decisions about the most profitable treatment.
Resumo:
Secondary metabolites play an important role in plant protection against biotic and abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are two such groups of compounds derived from the common phenylpropanoid pathway. The basal levels and the inducibility of PGs and CTs depend on genetic as well as environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport and sink strength also affect PG and CT levels. A negative correlation between the levels of PGs and CTs was observed in several studies. However, the molecular mechanism underlying such relation is not known. We used a cell culture system to understand negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, organelles and precursors were discussed in the context of aspen suspension cells’ inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the cells. Based on metabolic and gene expression data, the CT reduction in salicin-accumulating cells is partly a result of regulatory changes at the transcriptional level affecting carbon partitioning between growth processes, and phenylpropanoid CT biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6. In Populus, sucrose is the common transported carbohydrate and its transport is possibly regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and investigated, by transgenic analysis, the possible role of the most abundantly expressed member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were altered in mature leaves. The levels of PGs and CTs were lower in green tissues of transgenic plants under N-replete, but were higher under N-depleted conditions, compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-level dependent PG-CT homeostasis by differential carbohydrate allocation.