4 resultados para urban location factors
em Digital Commons - Michigan Tech
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
Reed canary grass (Phalaris arundinacea L.) is an invasive species originally from Europe that has now expanded to a large range within the United States. Reed canary grass possesses a number of traits that allow it to thrive in a wide range of environmental factors, including high rates of sedimentation, bouts of flooding, and high levels of nutrient inputs. Therefore, the goals of our study were to determine if 1) certain types of wetland were more susceptible to Reed canary grass invasion, and 2) disturbances facilitated Reed canary grass invasion. This study was conducted within the Keweenaw Bay Indian Community reservation in the Upper Peninsula of Michigan, in Baraga County. We selected 28 wetlands for analysis. At each wetland, we identified and sampled distinct vegetative communities and their corresponding environmental attributes, which included water table depth, pH, conductivity, calcium and magnesium concentrations, and percent organic matter. Disturbances at each site were catalogued and their severity estimated with the aid of aerial photos. A GIS dataset containing information about the location of Reed canary grass within the study wetlands, the surrounding roads and the level of roadside Reed canary grass invasion was also developed. In all, 287 plant species were identified and classified into 16 communities, which were then further grouped into three broad groupings of wetlands: nonforested graminoid, Sphagnum peatlands, and forested wetlands. The two most common disturbances identified were roads and off-road recreation trails, both occurring at 23 of the 28 sites. Logging activity surrounding the wetlands was the next most common disturbance and was found at 18 of the sites. Occurrence of Reed canary grass was most common in the non-forested graminoid communities. Reed canary grass was very infrequent in forested wetlands, and almost never occurred in the Sphagnum peatlands. Disturbance intensity was the most significant environmental factor in explaining Reed canary grass occurrence within wetlands. Statistically significant relationships were identified at distances of 1000 m, 500 m, and 250 m from studied wetlands, between the level of road development and the severity of Reed canary grass invasion along roadsides. Further analysis revealed a significant relationship between roadside Reed canary grass populations and the level of road development (e.g. paved, graded, and ungraded).
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
Purpose – The focus of this research is to find out a meaningful relationship between adopting sustainability practices and some of the characteristics of institutions of higher education (IHE). IHE can be considered as the best place to promote sustainability and develop the culture of sustainability in society. Thus, this research is conducted to help developing sustainability in IHE which have significant direct and indirect impact on society and the environment. Design/methodology/approach – First, the sustainability letter grades were derived from “Greenreportcard.org” which have been produced based on an evaluation of each school in nine main categories including: Administration, Climate Change & Energy, Food & Recycling, etc. In the next step, the characteristics of IHE as explanatory variables were chosen from “The Integrated Postsecondary Education Data System” (IPEDS) and respective database was implemented in STATA Software. Finally, the “ordered-Probit Model” is used through STATA to analyze the impact of some IHE’s factor on adopting sustainability practices on campus. Finding - The results of this analysis indicate that variables related to “Financial support” category are the most influential factors in determining the sustainability status of the university. “The university features” with two significant variables for “Selectivity” and “Top 50 LA” can be classified as the second influential category in this table, although the “Student influence” is also eligible to be ranked as the second important factor. Finally, the “Location feature” of university was determined with the least influential impact on the sustainability of campuses. Originality/value – Understanding the factors which influence adopting sustainability practices in IHE is an important issue to develop more effective sustainability’s methods and policies.