2 resultados para the linear logistic test model
em Digital Commons - Michigan Tech
Resumo:
Within academic institutions, writing centers are uniquely situated, socially rich sites for exploring learning and literacy. I examine the work of the Michigan Tech Writing Center's UN 1002 World Cultures study teams primarily because student participants and Writing Center coaches are actively engaged in structuring their own learning and meaning-making processes. My research reveals that learning is closely linked to identity formation and leading the teams is an important component of the coaches' educational experiences. I argue that supporting this type of learning requires an expanded understanding of literacy and significant changes to how learning environments are conceptualized and developed. This ethnographic study draws on data collected from recordings and observations of one semester of team sessions, my own experiences as a team coach and UN 1002 teaching assistant, and interviews with Center coaches prior to their graduation. I argue that traditional forms of assessment and analysis emerging from individualized instruction models of learning cannot fully account for the dense configurations of social interactions identified in the Center's program. Instead, I view the Center as an open system and employ social theories of learning and literacy to uncover how the negotiation of meaning in one context influences and is influenced by structures and interactions within as well as beyond its boundaries. I focus on the program design, its enaction in practice, and how engagement in this type of writing center work influences coaches' learning trajectories. I conclude that, viewed as participation in a community of practice, the learning theory informing the program design supports identity formation —a key aspect of learning as argued by Etienne Wenger (1998). The findings of this study challenge misconceptions of peer learning both in writing centers and higher education that relegate peer tutoring to the role of support for individualized models of learning. Instead, this dissertation calls for consideration of new designs that incorporate peer learning as an integral component. Designing learning contexts that cultivate and support the formation of new identities is complex, involves a flexible and opportunistic design structure, and requires the availability of multiple forms of participation and connections across contexts.
Resumo:
Background mortality is an essential component of any forest growth and yield model. Forecasts of mortality contribute largely to the variability and accuracy of model predictions at the tree, stand and forest level. In the present study, I implement and evaluate state-of-the-art techniques to increase the accuracy of individual tree mortality models, similar to those used in many of the current variants of the Forest Vegetation Simulator, using data from North Idaho and Montana. The first technique addresses methods to correct for bias induced by measurement error typically present in competition variables. The second implements survival regression and evaluates its performance against the traditional logistic regression approach. I selected the regression calibration (RC) algorithm as a good candidate for addressing the measurement error problem. Two logistic regression models for each species were fitted, one ignoring the measurement error, which is the “naïve” approach, and the other applying RC. The models fitted with RC outperformed the naïve models in terms of discrimination when the competition variable was found to be statistically significant. The effect of RC was more obvious where measurement error variance was large and for more shade-intolerant species. The process of model fitting and variable selection revealed that past emphasis on DBH as a predictor variable for mortality, while producing models with strong metrics of fit, may make models less generalizable. The evaluation of the error variance estimator developed by Stage and Wykoff (1998), and core to the implementation of RC, in different spatial patterns and diameter distributions, revealed that the Stage and Wykoff estimate notably overestimated the true variance in all simulated stands, but those that are clustered. Results show a systematic bias even when all the assumptions made by the authors are guaranteed. I argue that this is the result of the Poisson-based estimate ignoring the overlapping area of potential plots around a tree. Effects, especially in the application phase, of the variance estimate justify suggested future efforts of improving the accuracy of the variance estimate. The second technique implemented and evaluated is a survival regression model that accounts for the time dependent nature of variables, such as diameter and competition variables, and the interval-censored nature of data collected from remeasured plots. The performance of the model is compared with the traditional logistic regression model as a tool to predict individual tree mortality. Validation of both approaches shows that the survival regression approach discriminates better between dead and alive trees for all species. In conclusion, I showed that the proposed techniques do increase the accuracy of individual tree mortality models, and are a promising first step towards the next generation of background mortality models. I have also identified the next steps to undertake in order to advance mortality models further.