2 resultados para technical assistance and rural extension

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gravity-flow aqueducts are used to bring clean water from mountain springs in the Comarca Ngäbe-Buglé, Panama, to the homes of the indigenous people who reside there. Spring captures enclose a spring to direct the flow of water into the transmission line. Seepage contact springs are most common, with water appearing above either hard basalt bedrock or a dense clay layer. Spring flows vary dramatically during wet and dry seasons, and discharge points of springs can shift, sometimes enough to impact the capture structure and its ability to properly collect all of the available water. Traditionally, spring captures are concrete boxes. The spring boxes observed by the author were dilapidated or out of alignment with the spring itself, only capturing part of the discharge. An improved design approach was developed that mimics the terrain surrounding the spring source to address these issues. Over the course of a year, three different spring sites were evaluated, and spring captures were designed and constructed based on the new approach. Spring flow data from each case study demonstrate increased flow capture in the improved structures. Rural water systems, including spring captures, can be sustainably maintained by the Circuit Rider model, a technical support system in which technical assistance is provided for the operation of the water systems. During 2012-2013, the author worked as a Circuit Rider and facilitated a water system improvement project while exploring methods of community empowerment to increase the capacity for system maintenance. Based on these experiences, recommendations are provided to expand the Circuit Rider model in the Comarca Ngäbe-Buglé under the Panamanian Ministry of Health’s Water and Sanitation Project (PASAP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, rural populations are far less likely to have access to clean drinking water than are urban ones. In many developing countries, the current approach to rural water supply uses a model of demand-driven, community-managed water systems. In Suriname, South America rural populations have limited access to improved water supplies; community-managed water supply systems have been installed in several rural communities by nongovernmental organizations as part of the solution. To date, there has been no review of the performance of these water supply systems. This report presents the results of an investigation of three rural water supply systems constructed in Saramaka villages in the interior of Suriname. The investigation used a combination of qualitative and quantitative methods, coupled with ethnographic information, to construct a comprehensive overview of these water systems. This overview includes the water use of the communities, the current status of the water supply systems, histories and sustainability of the water supply projects, technical reviews, and community perceptions. From this overview, factors important to the sustainability of these water systems were identified. Community water supply systems are engineered solutions that operate through social cooperation. The results from this investigation show that technical adequacy is the first and most critical factor for long-term sustainability of a water system. It also shows that technical adequacy is dependent on the appropriateness of the engineering design for the social, cultural, and natural setting in which it takes place. The complex relationships between technical adequacy, community support, and the involvement of women play important roles in the success of water supply projects. Addressing these factors during the project process and taking advantage of alternative water resources may increase the supply of improved drinking water to rural communities.