10 resultados para synsedimentary faults

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformers are very important elements of any power system. Unfortunately, they are subjected to through-faults and abnormal operating conditions which can affect not only the transformer itself but also other equipment connected to the transformer. Thus, it is essential to provide sufficient protection for transformers as well as the best possible selectivity and sensitivity of the protection. Nowadays microprocessor-based relays are widely used to protect power equipment. Current differential and voltage protection strategies are used in transformer protection applications and provide fast and sensitive multi-level protection and monitoring. The elements responsible for detecting turn-to-turn and turn-to-ground faults are the negative-sequence percentage differential element and restricted earth-fault (REF) element, respectively. During severe internal faults current transformers can saturate and slow down the speed of relay operation which affects the degree of equipment damage. The scope of this work is to develop a modeling methodology to perform simulations and laboratory tests for internal faults such as turn-to-turn and turn-to-ground for two step-down power transformers with capacity ratings of 11.2 MVA and 290 MVA. The simulated current waveforms are injected to a microprocessor relay to check its sensitivity for these internal faults. Saturation of current transformers is also studied in this work. All simulations are performed with the Alternative Transients Program (ATP) utilizing the internal fault model for three-phase two-winding transformers. The tested microprocessor relay is the SEL-487E current differential and voltage protection relay. The results showed that the ATP internal fault model can be used for testing microprocessor relays for any percentage of turns involved in an internal fault. An interesting observation from the experiments was that the SEL-487E relay is more sensitive to turn-to-turn faults than advertized for the transformers studied. The sensitivity of the restricted earth-fault element was confirmed. CT saturation cases showed that low accuracy CTs can be saturated with a high percentage of turn-to-turn faults, where the CT burden will affect the extent of saturation. Recommendations for future work include more accurate simulation of internal faults, transformer energization inrush, and other scenarios involving core saturation, using the newest version of the internal fault model. The SEL-487E relay or other microprocessor relays should again be tested for performance. Also, application of a grounding bank to the delta-connected side of a transformer will increase the zone of protection and relay performance can be tested for internal ground faults on both sides of a transformer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power transformers are key components of the power grid and are also one of the most subjected to a variety of power system transients. The failure of a large transformer can cause severe monetary losses to a utility, thus adequate protection schemes are of great importance to avoid transformer damage and maximize the continuity of service. Computer modeling can be used as an efficient tool to improve the reliability of a transformer protective relay application. Unfortunately, transformer models presently available in commercial software lack completeness in the representation of several aspects such as internal winding faults, which is a common cause of transformer failure. It is also important to adequately represent the transformer at frequencies higher than the power frequency for a more accurate simulation of switching transients since these are a well known cause for the unwanted tripping of protective relays. This work develops new capabilities for the Hybrid Transformer Model (XFMR) implemented in ATPDraw to allow the representation of internal winding faults and slow-front transients up to 10 kHz. The new model can be developed using any of two sources of information: 1) test report data and 2) design data. When only test-report data is available, a higher-order leakage inductance matrix is created from standard measurements. If design information is available, a Finite Element Model is created to calculate the leakage parameters for the higher-order model. An analytical model is also implemented as an alternative to FEM modeling. Measurements on 15-kVA 240?/208Y V and 500-kVA 11430Y/235Y V distribution transformers were performed to validate the model. A transformer model that is valid for simulations for frequencies above the power frequency was developed after continuing the division of windings into multiple sections and including a higher-order capacitance matrix. Frequency-scan laboratory measurements were used to benchmark the simulations. Finally, a stability analysis of the higher-order model was made by analyzing the trapezoidal rule for numerical integration as used in ATP. Numerical damping was also added to suppress oscillations locally when discontinuities occurred in the solution. A maximum error magnitude of 7.84% was encountered in the simulated currents for different turn-to-ground and turn-to-turn faults. The FEM approach provided the most accurate means to determine the leakage parameters for the ATP model. The higher-order model was found to reproduce the short-circuit impedance acceptably up to about 10 kHz and the behavior at the first anti-resonant frequency was better matched with the measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Kenya (a.k.a., Gregory) Rift is a geologically active area located within the eastern branch of the larger East African Rift System (EARS). The study area is located in the southern Kenya Rift between 1° South and the Kenya-Tanzania border (covering approximately 1.5 square degrees, semi-centered on Lake Magadi) and is predominantly filled with extrusive igneous rocks (mostly basalts, phonolites and trachytes) of Miocene age or younger. Sediments are thin, less than 1.5Ma, and are confined to small grabens. The EARS can serve both as an analogue for ancient continental rifting and as a modern laboratory to observe the geologic processes responsible for rifting. This study demonstrates that vintage (as in older, quality maps published by the Kenya Geological Survey, that may be outdated based on newer findings) quarter-degree maps can be successfully combined with recently published data, and used to interpret satellite (mainly Landsat 7) images to produce versatile, updated digital maps. The study area has been remapped using this procedure and although it covers a large area, the mapping retains a quadrangle level of detail. Additionally, all geologic mapping elements (formations, faults, etc.) have been correlated across older map boundaries so that geologic units don't end artificially at degree boundaries within the study area. These elements have also been saved as individual digital files to facilitate future analysis. A series of maps showing the evolution of the southern Kenya rift from the Miocene to the present was created by combining the updated geologic map with age dates for geologic formations and fault displacements. Over 200 age dates covering the entire length of the Kenya Rift have been compiled for this study, and 6 paleo-maps were constructed to demonstrate the evolution of the area, starting with the eruption of the Kishalduga and Lisudwa melanephelinites onto the metamorphic basement around 15Ma. These eruptions occurred before the initial rift faulting and were followed by a massive eruption of phonolites between 13-10 Ma that covered most of the Kenya dome. This was followed by a period of relative quiescence, until the initial faulting defined the western boundary of the rift around 7Ma. The resulting graben was asymmetrical until corresponding faults to the east developed around 3Ma. The rift valley was flooded by basalts and trachytes between 3Ma and 700ka, after which the volcanic activity slowed to a near halt. Since 700ka most of the deposition has been comprised of sediments, mainly from lakes occupying the various basins in the area. The main results of this study are, in addition to a detailed interpretation of the rift development, a new geologic map that correlates dozens of formations across old map boundaries and a compilation of over 300 age dates. Specific products include paleomaps, tables of fault timing and displacement, and volume estimates of volcanic formations. The study concludes with a generalization of the present environment at Magadi including discussions of lagoon chemistry, mantle gases in relation to the trona deposit, and biology of the hot springs. Several biologic samples were collected during the 2006 field season in an attempt to characterize the organisms that are commonly seen in the present Lake Magadi environment. Samples were selected to represent the different, distinctive forms that are found in the hotsprings. Each sample had it own distinctive growth habit, and analysis showed that each was formed by a different cyanobacterial. Actual algae was rare in the collected samples, and represented by a few scattered diatoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A re-examination of seismic time-lapse data from the Teal South field provides support for a previously proposed model of regional pressure decline and the associated liberation of gas from nearby reservoirs due to the production from the only reservoir among them that is under production. The use of a specific attribute, instantaneous amplitude, and a series of time slices, however, provides increased detail in understanding fluid migration into or out of the reservoirs, and the path taken by pressure changes across faults. The regional decrease of pressure due to production in one reservoir has dramatic effects in nearby untapped reservoirs, one of which appears to exhibit evidence for the escape, and possible re-trapping nearby, of hydrocarbons from a spill point. The influx of water into the producing reservoir is also evidenced by a decrease in amplitude at one end of the oil-water contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990’s. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three poststack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when corrected for, indicate water encroachment at the base of the producing reservoir. I also identify specific sites of leakage from various unproduced reservoirs, the result of regional pressure blowdown as explained in previous studies; those earlier studies, however, were unable to identify direct evidence of fluid movement. Of particular interest is the identification of one site where oil apparently leaked from one reservoir into a “new” reservoir that did not originally contain oil, but was ideally suited as a trap for fluids leaking from the neighboring spill-point. With continued pressure drop, oil in the new reservoir increased as more oil entered into the reservoir and expanded, liberating gas from solution. Because of the limited volume available for oil and gas in that temporary trap, oil and gas also escaped from it into the surrounding formation. I also note that some of the reservoirs demonstrate time-lapse changes only in the “gas cap” and not in the oil zone, even though gas must be coming out of solution everywhere in the reservoir. This is explained by interplay between pore-fluid modulus reduction by gas saturation decrease and dry-frame modulus increase by frame stiffening. In the second part of this work, I examine various rock-physics models in an attempt to quantitatively account for frame-stiffening that results from reduced pore-fluid pressure in the producing reservoir, searching for a model that would predict the unusual AVO features observed in the time-lapse prestack and stacked data at Teal South. While several rock-physics models are successful at predicting the time-lapse response for initial production, most fail to match the observations for continued production between Phase I and Phase II. Because the reservoir was initially overpressured and unconsolidated, reservoir compaction was likely significant, and is probably accomplished largely by uniaxial strain in the vertical direction; this implies that an anisotropic model may be required. Using Walton’s model for anisotropic unconsolidated sand, I successfully model the time-lapse changes for all phases of production. This observation may be of interest for application to other unconsolidated overpressured reservoirs under production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large earthquakes may strongly influence the activity of volcanoes through static and dynamic processes. In this study, we quantify the static and dynamic stress change on 27 volcanoes in Central America, after the Mw 7.6 Costa Rica earthquake of 5 September 2012. Following this event, 8 volcanoes showed signs of activity. We calculated the static stress change due to the earthquake on hypothetical faults under these volcanoes with Coulomb 3.3. For the dynamic stress change, we computed synthetic seismograms to simulate the waveforms at these volcanoes. We then calculated the Peak Dynamic Stress (PDS) from the modeled peak ground velocities. The resulting values are from moderate to minor changes in stress (10-1-10-2 MPa) with the PDS values generally an order of magnitude larger than the static stress change. Although these values are small, they may be enough to trigger a response by the volcanoes, and are on the order of stress changes implicated in many other studies of volcano and earthquake triggering by large earthquakes. This study provides insight into the poorly-constrained mechanism for remote triggering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the Yellowstone National Park, Wyoming, the silicic Yellowstone volcanic field is one of the most active volcanic systems all over the world. Although the last rhyolite eruption occurred around 70,000 years ago, Yellowstone is still believed to be volcanically active, due to high hydrothermal and seismic activity. The earthquake data used in this study cover the period of time between 1988 and 2010. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events has oblique, normal-faulting solutions. The overall direction of extension throughout the 0.64 Ma Yellowstone caldera looks nearly ENE, consistently with the direction of alignments of volcanic vents within the caldera, but detailed study revealed spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years in the Norris Junction area, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The Yellowstone caldera was subject to periods of net uplift and subsidence over the past century, explained in previous studies as caused by expanding or contracting sills, at different depths. Based on the models used to explain these deformation periods, we investigated the relationship between variability in aseismic deformation and seismic activity and faulting styles. Focal mechanisms and P and T axes were divided into temporal and depth intervals, in order to identify spatial or temporal trends in deformation. The presence of “chocolate tablet” structures, with composite dilational faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera. Strike-slip component movement was found in a depth interval below a contracting sill, indicating the movement of magma towards the caldera.