2 resultados para symbols
em Digital Commons - Michigan Tech
Resumo:
Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI.
Resumo:
Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Some historical uses and background are touched upon as well. The majority of the definitions are contained within this chapter as well. In Chapter 2 we consider the question whether one can decompose λ copies of monochromatic Kv into copies of Kk such that each copy of the Kk contains at most one edge from each Kv. This is called a proper edge coloring (Hurd, Sarvate, [29]). The majority of the content in this section is a wide variety of examples to explain the constructions used in Chapters 3 and 4. In Chapters 3 and 4 we investigate how to properly color BIBD(v, k, λ) for k = 4, and 5. Not only will there be direct constructions of relatively small BIBDs, we also prove some generalized constructions used within. In Chapter 5 we talk about an alternate solution to Chapters 3 and 4. A purely graph theoretical solution using matchings, augmenting paths, and theorems about the edgechromatic number is used to develop a theorem that than covers all possible cases. We also discuss how this method performed compared to the methods in Chapters 3 and 4. In Chapter 6, we switch topics to Latin rectangles that have the same number of symbols and an equivalent sized matrix to Latin squares. Suppose ab = n2. We define an equitable Latin rectangle as an a × b matrix on a set of n symbols where each symbol appears either [b/n] or [b/n] times in each row of the matrix and either [a/n] or [a/n] times in each column of the matrix. Two equitable Latin rectangles are orthogonal in the usual way. Denote a set of ka × b mutually orthogonal equitable Latin rectangles as a k–MOELR(a, b; n). We show that there exists a k–MOELR(a, b; n) for all a, b, n where k is at least 3 with some exceptions.