5 resultados para switch state coarse fuzzy vector controller

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this report, we develop an intelligent adaptive neuro-fuzzy controller by using adaptive neuro fuzzy inference system (ANFIS) techniques. We begin by starting with a standard proportional-derivative (PD) controller and use the PD controller data to train the ANFIS system to develop a fuzzy controller. We then propose and validate a method to implement this control strategy on commercial off-the-shelf (COTS) hardware. An analysis is made into the choice of filters for attitude estimation. These choices are limited by the complexity of the filter and the computing ability and memory constraints of the micro-controller. Simplified Kalman filters are found to be good at estimation of attitude given the above constraints. Using model based design techniques, the models are implemented on an embedded system. This enables the deployment of fuzzy controllers on enthusiast-grade controllers. We evaluate the feasibility of the proposed control strategy in a model-in-the-loop simulation. We then propose a rapid prototyping strategy, allowing us to deploy these control algorithms on a system consisting of a combination of an ARM-based microcontroller and two Arduino-based controllers. We then use a combination of the code generation capabilities within MATLAB/Simulink in combination with multiple open-source projects in order to deploy code to an ARM CortexM4 based controller board. We also evaluate this strategy on an ARM-A8 based board, and a much less powerful Arduino based flight controller. We conclude by proving the feasibility of fuzzy controllers on Commercial-off the shelf (COTS) hardware, we also point out the limitations in the current hardware and make suggestions for hardware that we think would be better suited for memory heavy controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focused on the control of a system with recycle. A new control strategy using neural network combined with PID controller was proposed. The combined controller was studied and tested on the pressure control of a vaporizer inside a para-xylene production process. The major problems are the negative effects of recycle and the delays on instability and performance. The neural network was designed to move the process close to the set points while the PID accomplishes the finer level of disturbance rejection and offset reductions. Our simulation results show that during control, the neural network was able to determine the nonlinear relationship between steady state and manipulated variables. The results also show the disturbance rejection was handled by PID controller effectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy community detection is to identify fuzzy communities in a network, which are groups of vertices in the network such that the membership of a vertex in one community is in [0,1] and that the sum of memberships of vertices in all communities equals to 1. Fuzzy communities are pervasive in social networks, but only a few works have been done for fuzzy community detection. Recently, a one-step forward extension of Newman’s Modularity, the most popular quality function for disjoint community detection, results into the Generalized Modularity (GM) that demonstrates good performance in finding well-known fuzzy communities. Thus, GMis chosen as the quality function in our research. We first propose a generalized fuzzy t-norm modularity to investigate the effect of different fuzzy intersection operators on fuzzy community detection, since the introduction of a fuzzy intersection operation is made feasible by GM. The experimental results show that the Yager operator with a proper parameter value performs better than the product operator in revealing community structure. Then, we focus on how to find optimal fuzzy communities in a network by directly maximizing GM, which we call it Fuzzy Modularity Maximization (FMM) problem. The effort on FMM problem results into the major contribution of this thesis, an efficient and effective GM-based fuzzy community detection method that could automatically discover a fuzzy partition of a network when it is appropriate, which is much better than fuzzy partitions found by existing fuzzy community detection methods, and a crisp partition of a network when appropriate, which is competitive with partitions resulted from the best disjoint community detections up to now. We address FMM problem by iteratively solving a sub-problem called One-Step Modularity Maximization (OSMM). We present two approaches for solving this iterative procedure: a tree-based global optimizer called Find Best Leaf Node (FBLN) and a heuristic-based local optimizer. The OSMM problem is based on a simplified quadratic knapsack problem that can be solved in linear time; thus, a solution of OSMM can be found in linear time. Since the OSMM algorithm is called within FBLN recursively and the structure of the search tree is non-deterministic, we can see that the FMM/FBLN algorithm runs in a time complexity of at least O (n2). So, we also propose several highly efficient and very effective heuristic algorithms namely FMM/H algorithms. We compared our proposed FMM/H algorithms with two state-of-the-art community detection methods, modified MULTICUT Spectral Fuzzy c-Means (MSFCM) and Genetic Algorithm with a Local Search strategy (GALS), on 10 real-world data sets. The experimental results suggest that the H2 variant of FMM/H is the best performing version. The H2 algorithm is very competitive with GALS in producing maximum modularity partitions and performs much better than MSFCM. On all the 10 data sets, H2 is also 2-3 orders of magnitude faster than GALS. Furthermore, by adopting a simply modified version of the H2 algorithm as a mutation operator, we designed a genetic algorithm for fuzzy community detection, namely GAFCD, where elite selection and early termination are applied. The crossover operator is designed to make GAFCD converge fast and to enhance GAFCD’s ability of jumping out of local minimums. Experimental results on all the data sets show that GAFCD uncovers better community structure than GALS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.