4 resultados para spatial scales
em Digital Commons - Michigan Tech
Resumo:
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
Resumo:
Characterizing the spatial scaling and dynamics of convective precipitation in mountainous terrain and the development of downscaling methods to transfer precipitation fields from one scale to another is the overall motivation for this research. Substantial progress has been made on characterizing the space-time organization of Midwestern convective systems and tropical rainfall, which has led to the development of statistical/dynamical downscaling models. Space-time analysis and downscaling of orographic precipitation has received less attention due to the complexities of topographic influences. This study uses multiscale statistical analysis to investigate the spatial scaling of organized thunderstorms that produce heavy rainfall and flooding in mountainous regions. Focus is placed on the eastern and western slopes of the Appalachian region and the Front Range of the Rocky Mountains. Parameter estimates are analyzed over time and attention is given to linking changes in the multiscale parameters with meteorological forcings and orographic influences on the rainfall. Influences of geographic regions and predominant orographic controls on trends in multiscale properties of precipitation are investigated. Spatial resolutions from 1 km to 50 km are considered. This range of spatial scales is needed to bridge typical scale gaps between distributed hydrologic models and numerical weather prediction (NWP) forecasts and attempts to address the open research problem of scaling organized thunderstorms and convection in mountainous terrain down to 1-4 km scales.
Resumo:
The Zagros oak forests in Western Iran are critically important to the sustainability of the region. These forests have undergone dramatic declines in recent decades. We evaluated the utility of the non-parametric Random Forest classification algorithm for land cover classification of Zagros landscapes, and selected the best spatial and spectral predictive variables. The algorithm resulted in high overall classification accuracies (>85%) and also equivalent classification accuracies for the datasets from the three different sensors. We evaluated the associations between trends in forest area and structure with trends in socioeconomic and climatic conditions, to identify the most likely driving forces creating deforestation and landscape structure change. We used available socioeconomic (urban and rural population, and rural income), and climatic (mean annual rainfall and mean annual temperature) data for two provinces in northern Zagros. The most correlated driving force of forest area loss was urban population, and climatic variables to a lesser extent. Landscape structure changes were more closely associated with rural population. We examined the effects of scale changes on the results from spatial pattern analysis. We assessed the impacts of eight years of protection in a protected area in northern Zagros at two different scales (both grain and extent). The effects of protection on the amount and structure of forests was scale dependent. We evaluated the nature and magnitude of changes in forest area and structure over the entire Zagros region from 1972 to 2009. We divided the Zagros region in 167 Landscape Units and developed two measures— Deforestation Sensitivity (DS) and Connectivity Sensitivity (CS) — for each landscape unit as the percent of the time steps that forest area and ECA experienced a decrease of greater than 10% in either measure. A considerable loss in forest area and connectivity was detected, but no sudden (nonlinear) changes were detected at the spatial and temporal scale of the study. Connectivity loss occurred more rapidly than forest loss due to the loss of connecting patches. More connectivity was lost in southern Zagros due to climatic differences and different forms of traditional land use.
Resumo:
Ungulates are important components of a variety of ecosystems worldwide. This dissertation integrates aspects of ungulate and forest ecology to increase our understanding of how they work together in ways that are of interest to natural resource managers, educators, and those who are simply curious about nature. Although animal ecology and ecosystem ecology are often studied separately, one of the general goals of this dissertation is to examine how they interact across spatial and temporal scales. Forest ecosystems are heterogeneous across a range of scales. Spatial and temporal habitat use patterns of forest ungulates tend to be congregated in patches where food and/or cover are readily available. Ungulates interact with ecosystem processes by selectively foraging on plants and excreting waste products in concentrated patches. Positive feedbacks may develop where these activities increase the value of habitat through soil fertilization or the alteration of plant chemistry and architecture. Heterogeneity in ecosystem processes and plant community structure, observed at both stand and local scales, may be the integrated outcome of feedbacks between ungulate behavior and abiotic resource gradients. The first chapter of this dissertation briefly discusses pertinent background information on ungulate ecology, with a focus on white-tailed deer (Odocoileus virginianus) in the Upper Great Lakes region and moose (Alces acles) in Isle Royale National Park, Michigan, USA. The second chapter demonstrates why ecological context is important for studying ungulate ecology in forest ecosystems. Excluding deer from eastern hemlock (Tsuga canadensis) stands, which deer use primarily as winter cover, resulted in less spatial complexity in soil reactive nitrogen and greater complexity in diffuse light compared to unfenced stands. The spatial patterning of herbaceous-layer cover was more similar to nitrogen where deer were present, and was a combination of nitrogen and light within deer exclosures. This relationship depends on the seasonal timing of deer habitat use because deer fertilize the soil during winter, but leave during the growing season. The third chapter draws upon an eight-year, 39-stand data set of deer fecal pellet counts in hemlock stands to estimate the amount of nitrogen that deer are depositing in hemlock stands each winter. In stands of high winter deer use, deer-excreted nitrogen inputs consistently exceeded those of atmospheric deposition at the stand scale. At the neighborhood scale, deer-excreted nitrogen was often in excess of atmospheric deposition due to the patchy distribution of deer habitat use. Spatial patterns in habitat use were consistent over the eight-year study at both stand and neighborhood scales. The fourth chapter explores how foraging selectivity by moose interacts with an abiotic resource gradient to influence forest structure and composition. Soil depth on Isle Royale varies from east to west according to glacial history. Fir saplings growing in deeper soils on the west side are generally more palatable forage for moose (lower foliar C:N) than those growing in shallower soils on the east side. Therefore, saplings growing in better conditions are less likely to reach the canopy due to moose browsing, and fir is a smaller overstory component on the west side. Lastly, chapter five focuses on issues surrounding eastern hemlock regeneration failure, which is a habitat type that is important to many wildlife species. Increasing hemlock on the landscape is complicated by several factors including disturbance regime and climate change, in addition to the influence of deer.