3 resultados para sparse matrix-vector multiplication

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free-radical retrograde-precipitation polymerization, FRRPP in short, is a novel polymerization process discovered by Dr. Gerard Caneba in the late 1980s. The current study is aimed at gaining a better understanding of the reaction mechanism of the FRRPP and its thermodynamically-driven features that are predominant in controlling the chain reaction. A previously developed mathematical model to represent free radical polymerization kinetics was used to simulate a classic bulk polymerization system from the literature. Unlike other existing models, such a sparse-matrix-based representation allows one to explicitly accommodate the chain length dependent kinetic parameters. Extrapolating from the past results, mixing was experimentally shown to be exerting a significant influence on reaction control in FRRPP systems. Mixing alone drives the otherwise severely diffusion-controlled reaction propagation in phase-separated polymer domains. Therefore, in a quiescent system, in the absence of mixing, it is possible to retard the growth of phase-separated domains, thus producing isolated polymer nanoparticles (globules). Such a diffusion-controlled, self-limiting phenomenon of chain growth was also observed using time-resolved small angle x-ray scattering studies of reaction kinetics in quiescent systems of FRRPP. Combining the concept of self-limiting chain growth in quiescent FRRPP systems with spatioselective reaction initiation of lithography, microgel structures were synthesized in a single step, without the use of molds or additives. Hard x-rays from the bending magnet radiation of a synchrotron were used as an initiation source, instead of the more statistally-oriented chemical initiators. Such a spatially-defined reaction was shown to be self-limiting to the irradiated regions following a polymerization-induced self-assembly phenomenon. The pattern transfer aspects of this technique were, therefore, studied in the FRRP polymerization of N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA), a thermoreversible and ionic hydrogel, respectively. Reaction temperature increases the contrast between the exposed and unexposed zones of the formed microgels, while the irradiation dose is directly proportional to the extent of phase separation. The response of Poly (NIPAm) microgels prepared from the technique described in this study was also characterized by small angle neutron scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A basic approach to study a NVH problem is to break down the system in three basic elements – source, path and receiver. While the receiver (response) and the transfer path can be measured, it is difficult to measure the source (forces) acting on the system. It becomes necessary to predict these forces to know how they influence the responses. This requires inverting the transfer path. Singular Value Decomposition (SVD) method is used to decompose the transfer path matrix into its principle components which is required for the inversion. The usual approach to force prediction requires rejecting the small singular values obtained during SVD by setting a threshold, as these small values dominate the inverse matrix. This assumption of the threshold may be subjected to rejecting important singular values severely affecting force prediction. The new approach discussed in this report looks at the column space of the transfer path matrix which is the basis for the predicted response. The response participation is an indication of how the small singular values influence the force participation. The ability to accurately reconstruct the response vector is important to establish a confidence in force vector prediction. The goal of this report is to suggest a solution that is mathematically feasible, physically meaningful, and numerically more efficient through examples. This understanding adds new insight to the effects of current code and how to apply algorithms and understanding to new codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.