5 resultados para sound equipment

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to provide a procedure to include emissions to the atmosphere resulting from the combustion of diesel fuel during dredging operations into the decision-making process of dredging equipment selection. The proposed procedure is demonstrated for typical dredging methods and data from the Illinois Waterway as performed by the U.S. Army Corps of Engineers, Rock Island District. The equipment included in this study is a 16-inch cutterhead pipeline dredge and a mechanical bucket dredge used during the 2005 dredging season on the Illinois Waterway. Considerable effort has been put forth to identify and reduce environmental impacts from dredging operations. Though environmental impacts of dredging have been studied no efforts have been applied to the evaluation of air emissions from comparable types of dredging equipment, as in this study. By identifying the type of dredging equipment with the lowest air emissions, when cost, site conditions, and equipment availability are comparable, adverse environmental impacts can be minimized without compromising the dredging project. A total of 48 scenarios were developed by varying the dredged material quantity, transport distance, and production rates. This produced an envelope of results applicable to a broad range of site conditions. Total diesel fuel consumed was calculated using standard cost estimating practices as defined in the U.S. Army Corps of Engineers Construction Equipment Ownership and Operating Expense Schedule (USACE, 2005). The diesel fuel usage was estimated for all equipment used to mobilize and/or operate each dredging crew for every scenario. A Limited Life Cycle Assessment (LCA) was used to estimate the air emissions from two comparable dredging operations utilizing SimaPro LCA software. An Environmental Impact Single Score (EISS) was the SimaPro output selected for comparison with the cost per CY of dredging, potential production rates, and transport distances to identify possible decision points. The total dredging time was estimated for each dredging crew and scenario. An average hourly cost for both dredging crews was calculated based on Rock Island District 2005 dredging season records (Graham 2007/08). The results from this study confirm commonly used rules of thumb in the dredging industry by indicating that mechanical bucket dredges are better suited for long transport distances and have lower air emissions and cost per CY for smaller quantities of dredged material. In addition, the results show that a cutterhead pipeline dredge would be preferable for moderate and large volumes of dredged material when no additional booster pumps are required. Finally, the results indicate that production rates can be a significant factor when evaluating the air emissions from comparable dredging equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large Power transformers, an aging and vulnerable part of our energy infrastructure, are at choke points in the grid and are key to reliability and security. Damage or destruction due to vandalism, misoperation, or other unexpected events is of great concern, given replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can cause great damage and there is much interest in improving computer simulation models to correctly predict and avoid the consequences. EMTP (the Electromagnetic Transients Program) has been developed for computer simulation of power system transients. Component models for most equipment have been developed and benchmarked. Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Thus, transformer modeling is not a mature field and newer improved models must be made available. In this work, improved topologically-correct duality-based models are developed for three-phase autotransformers having five-legged, three-legged, and shell-form cores. The main problem in the implementation of detailed models is the lack of complete and reliable data, as no international standard suggests how to measure and calculate parameters. Therefore, parameter estimation methods are developed here to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, -i saturation characteristic, capacitive effects, and frequency dependency of winding resistance and core loss. Steady-state excitation, and de-energization and re-energization transients are simulated and compared with an earlier-developed BCTRAN-based model. Black start energization cases are also simulated as a means of model evaluation and compared with actual event records. The simulated results using the model developed here are reasonable and more correct than those of the BCTRAN-based model. Simulation accuracy is dependent on the accuracy of the equipment model and its parameters. This work is significant in that it advances existing parameter estimation methods in cases where the available data and measurements are incomplete. The accuracy of EMTP simulation for power systems including three-phase autotransformers is thus enhanced. Theoretical results obtained from this work provide a sound foundation for development of transformer parameter estimation methods using engineering optimization. In addition, it should be possible to refine which information and measurement data are necessary for complete duality-based transformer models. To further refine and develop the models and transformer parameter estimation methods developed here, iterative full-scale laboratory tests using high-voltage and high-power three-phase transformer would be helpful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional methods of measuring sound absorption coefficient and sound transmission loss of a material are time consuming. To overcome this limitation, normal incidence sound absorption and transmission loss measurement technique was developed. Unfortunately the equipment required for this task is equally expensive. Hence efforts are taken to develop a cost-effective equipment for measuring normal incidence sound absorption coefficient and transmission loss. An impedance tube capable of measure absorption coefficient and transmission loss is designed and built under a budget of $1500 for educational institutes. A background study is performed to gain knowledge and understanding of the normal incidence measurements technique. Based on the literature review, parameters involved such as tube material, source and microphone properties, sample holders, etc. are discussed in depth. Based on these parameters, design options are generated to meet the cost and functionality targets pre-assigned. After selection of materials and components, an impedance tube is built and tested using three fibrous absorption materials for absorption and a barrier for transmission loss performance. These measured results then compared with those obtained with the help of industry recognized Brel & Kjr impedance tube. The results show performances are comparable, hence validation the new built tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis represents the overview of hydrographic surveying and different types of modern and traditional surveying equipment, and data acquisition using the traditional single beam sonar system and a modern fully autonomous underwater vehicle, IVER3. During the thesis, the data sets were collected using the vehicles of the Great Lake Research Center at Michigan Technological University. This thesis also presents how to process and edit the bathymetric data on SonarWiz5. Moreover, the three dimensional models were created after importing the data sets in the same coordinate system. In these interpolated surfaces, the details and excavations can be easily seen on the surface models. In this study, the profiles are plotted on the surface models to compare the sensors and details on the seabed. It is shown that single beam sonar might miss some details, such as pipeline and quick elevation changes on the seabed when we compare to the side scan sonar of IVER3 because the single side scan sonar can acquire better resolution. However, sometimes using single beam sonar can save your project time and money because the single beam sonar is cheaper than side scan sonars and the processing might be easier than the side scan data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinguishing feature of the discipline of archaeology is its reliance upon sensory dependant investigation. As perceived by all of the senses, the felt environment is a unique area of archaeological knowledge. It is generally accepted that the emergence of industrial processes in the recent past has been accompanied by unprecedented sonic extremes. The work of environmental historians has provided ample evidence that the introduction of much of this unwanted sound, or "noise" was an area of contestation. More recent research in the history of sound has called for more nuanced distinctions than the noisy/quiet dichotomy. Acoustic archaeology tends to focus upon a reconstruction of sound producing instruments and spaces with a primary goal of ascertaining intentionality. Most archaeoacoustic research is focused on learning more about the sonic world of people within prehistoric timeframes while some research has been done on historic sites. In this thesis, by way of a meditation on industrial sound and the physical remains of the Quincy Mining Company blacksmith shop (Hancock, MI) in particular, I argue for an acceptance and inclusion of sound as artifact in and of itself. I am introducing the concept of an individual sound-form, or sonifact, as a reproducible, repeatable, representable physical entity, created by tangible, perhaps even visible, host-artifacts. A sonifact is a sound that endures through time, with negligible variability. Through the piecing together of historical and archaeological evidence, in this thesis I present a plausible sonifactual assemblage at the blacksmith shop in April 1916 as it may have been experienced by an individual traversing the vicinity on foot: an 'historic soundwalk.' The sensory apprehension of abandoned industrial sites is multi-faceted. In this thesis I hope to make the case for an acceptance of sound as a primary heritage value when thinking about the industrial past, and also for an increased awareness and acceptance of sound and listening as a primary mode of perception.