8 resultados para software testing methods
em Digital Commons - Michigan Tech
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
Since the introduction of the rope-pump in Nicaragua in the 1990s, the dependence on wells in rural areas has grown steadily. However, little or no attention is paid to rope-pump well performance after installation. Due to financial restraints, groundwater resource monitoring using conventional testing methods is too costly and out of reach of rural municipalities. Nonetheless, there is widespread agreement that without a way to quantify the changes in well performance over time, prioritizing regulatory actions is impossible. A manual pumping test method is presented, which at a fraction of the cost of a conventional pumping test, measures the specific capacity of rope-pump wells. The method requires only sight modifcations to the well and reasonable limitations on well useage prior to testing. The pumping test was performed a minimum of 33 times in three wells over an eight-month period in a small rural community in Chontales, Nicaragua. Data was used to measure seasonal variations in specific well capacity for three rope-pump wells completed in fractured crystalline basalt. Data collected from the tests were analyzed using four methods (equilibrium approximation, time-drawdown during pumping, time-drawdown during recovery, and time-drawdown during late-time recovery) to determine the best data-analyzing method. One conventional pumping test was performed to aid in evaluating the manual method. The equilibrim approximation can be performed while in the field with only a calculator and is the most technologically appropriate method for analyzing data. Results from this method overestimate specific capacity by 41% when compared to results from the conventional pumping test. The other analyes methods, requiring more sophisticated tools and higher-level interpretation skills, yielded results that agree to within 14% (pumping phase), 31% (recovery phase) and 133% (late-time recovery) of the conventional test productivity value. The wide variability in accuracy results principally from difficulties in achieving equilibrated pumping level and casing storage effects in the puping/recovery data. Decreases in well productivity resulting from naturally occuring seasonal water-table drops varied from insignificant in two wells to 80% in the third. Despite practical and theoretical limitations on the method, the collected data may be useful for municipal institutions to track changes in well behavior, eventually developing a database for planning future ground water development projects. Furthermore, the data could improve well-users’ abilities to self regulate well usage without expensive aquifer characterization.
Resumo:
Steel tubular cast-in-place pilings are used throughout the country for many different project types. These piles are a closed-end pipe with varying wall thicknesses and outer diameters, that are driven to depth and then the core is filled with concrete. These piles are typically used for smaller bridges, or secondary structures. Mostly the piling is designed based on a resistance based method which is a function of the soil properties of which the pile is driven through, however there is a structural capacity of these members that is considered to be the upper bound on the loading of the member. This structural capacity is given by the AASHTO LRFD (2010), with two methods. These two methods are based on a composite or non-composite section. Many state agencies and corporations use the non-composite equation because it is requires much less computation and is known to be conservative. However with the trends of the time, more and more structural elements are being investigated to determine ways to better understand the mechanics of the members, which could lead to more efficient and safer designs. In this project, a set of these piling are investigated. The way the cross section reacts to several different loading conditions, along with a more detailed observation of the material properties is considered as part of this research. The evaluation consisted of testing stub sections of pile with varying sizes (10-¾”, 12-¾”), wall thicknesses (0.375”, 0.5”), and testing methods (whole compression, composite compression, push through, core sampling). These stub sections were chosen as they would represent a similar bracing length to many different soils. In addition, a finite element model was developed using ANSYS to predict the strains from the testing of the pile cross sections. This model was able to simulate the strains from most of the loading conditions and sizes that were tested. The bond between the steel shell and the concrete core, along with the concrete strength through the depth of the cross section were some of the material properties of these sections that were investigated.
Resumo:
There has been a continuous evolutionary process in asphalt pavement design. In the beginning it was crude and based on past experience. Through research, empirical methods were developed based on materials response to specific loading at the AASHO Road Test. Today, pavement design has progressed to a mechanistic-empirical method. This methodology takes into account the mechanical properties of the individual layers and uses empirical relationships to relate them to performance. The mechanical tests that are used as part of this methodology include dynamic modulus and flow number, which have been shown to correlate with field pavement performance. This thesis was based on a portion of a research project being conducted at Michigan Technological University (MTU) for the Wisconsin Department of Transportation (WisDOT). The global scope of this project dealt with the development of a library of values as they pertain to the mechanical properties of the asphalt pavement mixtures paved in Wisconsin. Additionally, a comparison with the current associated pavement design to that of the new AASHTO Design Guide was conducted. This thesis describes the development of the current pavement design methodology as well as the associated tests as part of a literature review. This report also details the materials that were sampled from field operations around the state of Wisconsin and their testing preparation and procedures. Testing was conducted on available round robin and three Wisconsin mixtures and the main results of the research were: The test history of the Superpave SPT (fatigue and permanent deformation dynamic modulus) does not affect the mean response for both dynamic modulus and flow number, but does increase the variability in the test results of the flow number. The method of specimen preparation, compacting to test geometry versus sawing/coring to test geometry, does not statistically appear to affect the intermediate and high temperature dynamic modulus and flow number test results. The 2002 AASHTO Design Guide simulations support the findings of the statistical analyses that the method of specimen preparation did not impact the performance of the HMA as a structural layer as predicted by the Design Guide software. The methodologies for determining the temperature-viscosity relationship as stipulated by Witczak are sensitive to the viscosity test temperatures employed. The increase in asphalt binder content by 0.3% was found to actually increase the dynamic modulus at the intermediate and high test temperature as well as flow number. This result was based the testing that was conducted and was contradictory to previous research and the hypothesis that was put forth for this thesis. This result should be used with caution and requires further review. Based on the limited results presented herein, the asphalt binder grade appears to have a greater impact on performance in the Superpave SPT than aggregate angularity. Dynamic modulus and flow number was shown to increase with traffic level (requiring an increase in aggregate angularity) and with a decrease in air voids and confirm the hypotheses regarding these two factors. Accumulated micro-strain at flow number as opposed to the use of flow number appeared to be a promising measure for comparing the quality of specimens within a specific mixture. At the current time the Design Guide and its associate software needs to be further improved prior to implementation by owner/agencies.
Resumo:
As the development of genotyping and next-generation sequencing technologies, multi-marker testing in genome-wide association study and rare variant association study became active research areas in statistical genetics. This dissertation contains three methodologies for association study by exploring different genetic data features and demonstrates how to use those methods to test genetic association hypothesis. The methods can be categorized into in three scenarios: 1) multi-marker testing for strong Linkage Disequilibrium regions, 2) multi-marker testing for family-based association studies, 3) multi-marker testing for rare variant association study. I also discussed the advantage of using these methods and demonstrated its power by simulation studies and applications to real genetic data.
Resumo:
With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system. With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system.
Resumo:
A significant cost for foundations is the design and installation of piles when they are required due to poor ground conditions. Not only is it important that piles be designed properly, but also that the installation equipment and total cost be evaluated. To assist in the evaluation of piles a number of methods have been developed. In this research three of these methods were investigated, which were developed by the Federal Highway Administration, the US Corps of Engineers and the American Petroleum Institute (API). The results from these methods were entered into the program GRLWEAPTM to assess the pile drivability and to provide a standard base for comparing the three methods. An additional element of this research was to develop EXCEL spreadsheets to implement these three methods. Currently the Army Corps and API methods do not have publicly available software and must be performed manually, which requires that data is taken off of figures and tables, which can introduce error in the prediction of pile capacities. Following development of the EXCEL spreadsheet, they were validated with both manual calculations and existing data sets to ensure that the data output is correct. To evaluate the three pile capacity methods data was utilized from four project sites from North America. The data included site geotechnical data along with field determined pile capacities. In order to achieve a standard comparison of the data, the pile capacities and geotechnical data from the three methods were entered into GRLWEAPTM. The sites consisted of both cohesive and cohesionless soils; where one site was primarily cohesive, one was primarily cohesionless, and the other two consisted of inter-bedded cohesive and cohesionless soils. Based on this limited set of data the results indicated that the US Corps of Engineers method more closely compared with the field test data, followed by the API method to a lesser degree. The DRIVEN program compared favorably in cohesive soils, but over predicted in cohesionless material.
Resumo:
Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.