3 resultados para size effect

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphene is one of the most important materials. In this research, the structures and properties of graphene nano disks (GND) with a concentric shape were investigated by Density Functional Theory (DFT) calculations, in which the most effective DFT methods - B3lyp and Pw91pw91 were employed. It was found that there are two types of edges - Zigzag and Armchair in concentric graphene nano disks (GND). The bond length between armchair-edge carbons is much shorter than that between zigzag-edge carbons. For C24 GND that consists of 24 carbon atoms, only armchair edge with 12 atoms is formed. For a GND larger than the C24 GND, both armchair and zigzag edges co-exist. Furthermore, when the number of carbon atoms in armchair-edge are always 12, the number of zigzag-edge atoms increases with increasing the size of a GND. In addition, the stability of a GND is enhanced with increasing its size, because the ratio of edge-atoms to non-edge-atoms decreases. The size effect of a graphene nano disk on its HOMO-LUMO energy gap was evaluated. C6 and C24 GNDs possess HOMO-LUMO gaps of 1.7 and 2.1eV, respectively, indicating that they are semi-conductors. In contrast, C54 and C96 GNDs are organic metals, because their HOMO-LUMO gaps are as low as 0.3 eV. The effect of doping foreign atoms to the edges of GNDs on their structures, stabilities, and HOMO-LUMO energy gaps were also examined. When foreign atoms are attached to the edge of a GND, the original unsaturated carbon atoms become saturated. As a result, both of the C-C bonds lengths and the stability of a GND increase. Furthermore, the doping effect on the HOMO-LUMO energy gap is dependent on the type of doped atoms. The doping H, F, or OH into the edge of a GND increases its HOMO-LUMO energy gap. In contrast, a Li-doped GND has a lower HOMO-LUMO energy gap than that without doping. Therefore, Li-doping can increase the electrical conductance of a GND, whereas H, F, or OH-doping decreases its conductance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.