3 resultados para simulated rainfall
em Digital Commons - Michigan Tech
Resumo:
Characterizing the spatial scaling and dynamics of convective precipitation in mountainous terrain and the development of downscaling methods to transfer precipitation fields from one scale to another is the overall motivation for this research. Substantial progress has been made on characterizing the space-time organization of Midwestern convective systems and tropical rainfall, which has led to the development of statistical/dynamical downscaling models. Space-time analysis and downscaling of orographic precipitation has received less attention due to the complexities of topographic influences. This study uses multiscale statistical analysis to investigate the spatial scaling of organized thunderstorms that produce heavy rainfall and flooding in mountainous regions. Focus is placed on the eastern and western slopes of the Appalachian region and the Front Range of the Rocky Mountains. Parameter estimates are analyzed over time and attention is given to linking changes in the multiscale parameters with meteorological forcings and orographic influences on the rainfall. Influences of geographic regions and predominant orographic controls on trends in multiscale properties of precipitation are investigated. Spatial resolutions from 1 km to 50 km are considered. This range of spatial scales is needed to bridge typical scale gaps between distributed hydrologic models and numerical weather prediction (NWP) forecasts and attempts to address the open research problem of scaling organized thunderstorms and convection in mountainous terrain down to 1-4 km scales.
Resumo:
The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.
Resumo:
Traditional decision making research has often focused on one's ability to choose from a set of prefixed options, ignoring the process by which decision makers generate courses of action (i.e., options) in-situ (Klein, 1993). In complex and dynamic domains, this option generation process is particularly critical to understanding how successful decisions are made (Zsambok & Klein, 1997). When generating response options for oneself to pursue (i.e., during the intervention-phase of decision making) previous research has supported quick and intuitive heuristics, such as the Take-The-First heuristic (TTF; Johnson & Raab, 2003). When generating predictive options for others in the environment (i.e., during the assessment-phase of decision making), previous research has supported the situational-model-building process described by Long Term Working Memory theory (LTWM; see Ward, Ericsson, & Williams, 2013). In the first three experiments, the claims of TTF and LTWM are tested during assessment- and intervention-phase tasks in soccer. To test what other environmental constraints may dictate the use of these cognitive mechanisms, the claims of these models are also tested in the presence and absence of time pressure. In addition to understanding the option generation process, it is important that researchers in complex and dynamic domains also develop tools that can be used by `real-world' professionals. For this reason, three more experiments were conducted to evaluate the effectiveness of a new online assessment of perceptual-cognitive skill in soccer. This test differentiated between skill groups and predicted performance on a previously established test and predicted option generation behavior. The test also outperformed domain-general cognitive tests, but not a domain-specific knowledge test when predicting skill group membership. Implications for theory and training, and future directions for the development of applied tools are discussed.