1 resultado para set-points
em Digital Commons - Michigan Tech
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- Archive of European Integration (5)
- Aston University Research Archive (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (54)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Brock University, Canada (25)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (41)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (10)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (129)
- Digital Commons - Michigan Tech (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (55)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (42)
- Harvard University (8)
- Institute of Public Health in Ireland, Ireland (9)
- Instituto Politécnico do Porto, Portugal (35)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (8)
- Ministerio de Cultura, Spain (6)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (6)
- Publishing Network for Geoscientific & Environmental Data (72)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (18)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositorio de la Universidad de Cuenca (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (23)
- School of Medicine, Washington University, United States (5)
- Scielo Saúde Pública - SP (45)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (4)
- Universidade do Minho (11)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (35)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (123)
- Université de Montréal, Canada (66)
- University of Queensland eSpace - Australia (43)
- University of Southampton, United Kingdom (16)
Resumo:
This thesis is focused on the control of a system with recycle. A new control strategy using neural network combined with PID controller was proposed. The combined controller was studied and tested on the pressure control of a vaporizer inside a para-xylene production process. The major problems are the negative effects of recycle and the delays on instability and performance. The neural network was designed to move the process close to the set points while the PID accomplishes the finer level of disturbance rejection and offset reductions. Our simulation results show that during control, the neural network was able to determine the nonlinear relationship between steady state and manipulated variables. The results also show the disturbance rejection was handled by PID controller effectively.