7 resultados para satellite broadcasting

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mount Etna, Italy, is one of the most active volcanoes in the world, and is also regarded as one of the strongest volcanic sources of sulfur dioxide (SO2) emissions to the atmosphere. Since October 2004, an automated ultraviolet (UV) spectrometer network (FLAME) has provided ground-based SO2 measurements with high temporal resolution, providing an opportunity to validate satellite SO2 measurements at Etna. The Ozone Monitoring Instrument (OMI) on the NASA Aura satellite, which makes global daily measurements of trace gases in the atmosphere, was used to compare SO2 amount released by the volcano during paroxysmal lava-fountaining events from 2004 to present. We present the first comparison between SO2 emission rates and SO2 burdens obtained by the OMI transect technique and OMI Normalized Cloud-Mass (NCM) technique and the ground-based FLAME Mini-DOAS measurements. In spite of a good data set from the FLAME network, finding coincident OMI and FLAME measurements proved challenging and only one paroxysmal event provided a good validation for OMI. Another goal of this work was to assess the efficacy of the FLAME network in capturing paroxysmal SO2 emissions from Etna, given that the FLAME network is only operational during daylight hours and some paroxysms occur at night. OMI measurements are advantageous since SO2 emissions from nighttime paroxysms can often be quantified on the following day, providing improved constraints on Etna’s SO2 budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft’s orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any ground station. For this reason, it is suggested that each satellite in the constellation be equipped with power storage components so that it can store power for later transmission. This thesis presents a method for designing the solar power constellation orbits such that the number of ground stations visited during the given revisit period is maximized. This leads to maximizing the power transmission to ground stations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanoes pose a threat to the human population at regional and global scales and so efficient monitoring is essential in order to effectively manage and mitigate the risks that they pose. Volcano monitoring from space has been possible for over thirty years and now, more than ever, a suite of instruments exists with the capability to observe emissions of gas and ash from a unique perspective. The goal of this research is to demonstrate the use of a range of satellite-based sensors in order to detect and quantify volcanic sulphur dioxide, and to assess the relative performances of each sensor against one another. Such comparisons are important in order to standardise retrievals and permit better estimations of the global contribution of sulphur dioxide to the atmosphere from volcanoes for climate modelling. In this work, retrievals of volcanic sulphur dioxide from a number of instruments are compared, and the individual performances at quantifying emissions from large, explosive volcanic eruptions are assessed. Retrievals vary widely from sensor to sensor, and often the use of a number of sensors in synergy can provide the most complete picture, rather than just one instrument alone. Volcanic emissions have the ability to result significant economic loses by grounding aircraft due to the high risk associated with ash encountering aircraft. As sulphur dioxide is often easier to measure than ash, it is often used as a proxy. This work examines whether this is a reasonable assumption, using the Icelandic eruption in early 2010 as a case study. Results indicate that although the two species are for the most part collocated, separation can occur under some conditions, meaning that it is essential to accurately measure both species in order to provide effective hazard mitigation. Finally, the usefulness of satellite remote sensing in quantifying the passive degassing from Turrialba, Costa Rica is demonstrated. The increase in activity from 2005 – 2010 can be observed in satellite data prior to the phreatic phase of early 2010, and can therefore potentially provide a useful indication of changing activity at some volcanoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we attempt to define the capabilities of the infrared satellite remote sensor, Multifunctional Transport Satellite-2 (MTSAT-2) (i.e. a geosynchronous instrument), in characterizing volcanic eruptive behavior in the highly active region of Indonesia. Sulfur dioxide data from NASA's Ozone Monitoring Instrument (OMI) (i.e. a polar orbiting instrument) are presented here for validation of the processes interpreted using the thermal infrared datasets. Data provided from two case studies are analyzed specifically for eruptive products producing large thermal anomalies (i.e. lava flows, lava domes, etc.), volcanic ash and SO2 clouds; three distinctly characteristic and abundant volcanic emissions. Two primary methods used for detection of heat signatures are used and compared in this report including, single-channel thermal radiance (4-µm) and the normalized thermal index (NTI) algorithm. For automated purposes, fixed thresholds must be determined for these methods. A base minimum detection limit (MDL) for single-channel thermal radiance of 2.30E+05 Wm- 2sr-1m-1 and -0.925 for NTI generate false alarm rates of 35.78% and 34.16%, respectively. A spatial comparison method, developed here specifically for use in Indonesia and used as a second parameter for detection, is implemented to address the high false alarm rate. For the single-channel thermal radiance method, the utilization of the spatial comparison method eliminated 100% of the false alarms while maintaining every true anomaly. The NTI algorithm showed similar results with only 2 false alarms remaining. No definitive difference is observed between the two thermal detection methods for automated use; however, the single-channel thermal radiance method coupled with the SO2 mass abundance data can be used to interpret volcanic processes including the identification of lava dome activity at Sinabung as well as the mechanism for the dome emplacement (i.e. endogenous or exogenous). Only one technique, the brightness temperature difference (BTD) method, is used for the detection of ash. Trends of ash area, water/ice area, and their respective concentrations yield interpretations of increased ice formation, aggregation, and sedimentation processes that only a high-temporal resolution instrument like the MTSAT-2 can analyze. A conceptual model of a secondary zone of aggregation occurring in the migrating Kelut ash cloud, which decreases the distal fine-ash component and hazards to flight paths, is presented in this report. Unfortunately, SO2 data was unable to definitively reinforce the concept of a secondary zone of aggregation due to the lack of a sufficient temporal resolution. However, a detailed study of the Kelut SO2 cloud is used to determine that there was no climatic impacts generated from this eruption due to the atmospheric residence times and e-folding rate of ~14 days for the SO2. This report applies the complementary assets offered by utilizing a high-temporal and a high-spatial resolution satellite, and it demonstrates that these two instruments can provide unparalleled observations of dynamic volcanic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mt Etna's activity has increased during the last decade with a tendency towards more explosive eruptions that produce paroxysmal lava fountains. From January 2011 to April 2012, 25 lava fountaining episodes took place at Etna's New South-East Crater (NSEC). Improved understanding of the mechanism driving these explosive basaltic eruptions is needed to reduce volcanic hazards. This type of activity produces high sulfur dioxide (SO2) emissions, associated with lava flows and ash fall-out, but to date the SO2 emissions associated with Etna's lava fountains have been poorly constrained. The Ultraviolet (UV) Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua were used to measure the SO2 loadings. Ground-based data from the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) L-band Doppler radar, VOLDORAD 2B, used in collaboration with the Italian National Institute of Geophysics and Volcanology in Catania (INGV-CT), also detected the associated ash plumes, giving precise timing and duration for the lava fountains. This study resulted in the first detailed analysis of the OMI and AIRS SO2 data for Etna's lava fountains during the 2011-2012 eruptive cycle. The HYSPLIT trajectory model is used to constrain the altitude of the observed SO2 clouds, and results show that the SO2 emission usually coincided with the lava fountain peak intensity as detected by VOLDORAD. The UV OMI and IR AIRS SO2 retrievals permit quantification of the SO2 loss rate in the volcanic SO2 clouds, many of which were tracked for several days after emission. A first attempt to quantitatively validate AIRS SO2 retrievals with OMI data revealed a good correlation for high altitude SO2 clouds. Using estimates of the emitted SO2 at the time each paroxysm, we observe a correlation with the inter-paroxysm repose time. We therefore suggest that our data set supports the collapsing foam (CF) model [1] as driving mechanism for the paroxysmal events at the NSEC. Using VOLDORAD-based estimates of the erupted magma mass, we observe a large excess of SO2 in the eruption clouds. Satellite measurements indicate that SO2 emissions from Etnean lava fountains can reach the lower stratosphere and hence could pose a hazard to aviation. [1] Parfitt E.A (2004). A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geotherm. Res. 134, 77-107.