2 resultados para salicylate and acetylsalicylic acid determination

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular interactions between the host molecule, perthiolated beta-cyclodextrin (CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid (FC), have been inestigated theoretically in both the gas and aqueous phases. The major computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6- 31G. MP2 electronic energies were also computed based at the geometries optimized by both the RHF and B3LYP methods in the gas phase to establish a better estimate of the correlation effect. The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G levels using the PCM model. The most stable structures optimized in gas phase by both the RHF and B3LYP methods were used for the computations in solution. A method to systematically manipulate the relative position and orientation between the interacting molecules is proposed. In the gas phase, six trials with different host-guest relative positions and orientations were completed successfully with the B3LYP method for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF method. In the gas phase, the best results from the RHF method gives for the association Gibbs free energy (ΔG°) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. And the best results from the B3LYP method have ΔG° equal to -47.57kj/mol for CD-AD and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG° based on the geometries from both methods. For the RHF structure, the MP2 computations lowered ΔG° to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CDFC. The RHF solvent phase calculations yielded following results: ΔG°(aq) equals 107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the RHF method, the B3LYP method provided clearly better solvent phase results with ΔG° (aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC. These results qualitatively explain the experimental observations. However quantitatively they are in poor agreement with the experimental values available in the literature and those recently published by Liu et al. And the reason is believed to be omission of hydrophobic contribution to the association. Determining the global geometrical minima for these very large systems was very difficult and computationally time consuming, but after a very thorough search, these were identified. A relevant result of this search is that when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only partially embedded inside the CD cavity. The totally embedded complexes were found to have significantly higher energies. The semiempirical method, ZINDO, was employed to investigate the effect of complexation on the first electronic excitation of CD anchored to a metal nano-particle. The computational results revealed that after complexation to FC, the transition intensity declines to about 25% of the original value, and after complexation with AD, the intensity drops almost 50%. The tighter binding and transition intensity of CD-AD qualitatively agrees with the experimental result that the addition of AD to a solution of CD and FC restores the fluorescence of CD that was quenched by the addition of FC. A method to evaluate the “hydrophobic force” effect is proposed for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mo(VI) oxo complexes have been persistently sought after as epoxidation catalysts. Further, Mo(V) oxo clusters of the form M4(µ3-X)4 (M = transition metal, X = O, S) have been rigorously studied due to their remarkable structures and also their usefulness as models for electronic studies. The syntheses and characterizations of new Mo(VI) and Mo(V) oxo complexes have been described in this dissertation. Two new complexes MoO2Cl2Ph2P(O)CH2COOH and MoO2Cl2Ph2P(O)C6H4tBuS(O) were synthesized from reactions of “MoO2Cl2” with ligands Ph2P(O)CH2COOH and Ph2P(O)C6H4tBuS(O). Tetrameric packing arrangements comprised of hydrogen bonds were obtained for the complex MoO2Cl2Ph2P(O)CH2COOH and the ligand Ph2P(O)CH2COOH. Further the stability of an Mo-O bond was preferred over the Mo-S bond even though this resulted in the formation of a more strained seven membered ring. Tetranuclear Mo(V) complexes of the form [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2) were synthesized using reactions of MoO2(acac)2 with diphenyl and dimethyl phosphinic acids, in ethanol. In the crystal structure of these complexes four Mo=O units are interconnected by four triply bridging oxygen atoms and bridging phosphinate ligands. The complex exhibited fourfold symmetry as evidenced by a single 31P NMR peak for the P atoms in the coordinated ligands. Reaction of WO2(acac)2 with Ph2POOH in methanol resulted in a dimeric W(VI) complex [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] which contained a packing disorder in its crystal structure. Similar reactions of MoO2(acac)2 with benzoic acid derivatives resulted in dimeric complexes of the form [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4, (p-Cl)C6H4, (2,4-(OH)2)C6H3, (o-I)C6H4) and one tetrameric complex [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2C)C6H4(p-µ-O2C)Mo2O2(acac)2(µ-O)(µ-OC2H5)] with terephthalic acid. 1H NMR proved very useful in the prediction of the formation of dimers with the substituted benzoic acids, which were also confirmed by elemental analyses. The reductive capability of ethanol proved instrumental in the syntheses of Mo(V) tetrameric and dimeric clusters. Synthetic details, IR, 1H and 31P NMR spectroscopy and elemental analyses are reported for all new complexes. Further, single crystal X-ray structures of MoO2Cl2Ph2P(O)CH2COOH, MoO2Cl2Ph2P(O)C6H4tBuS(O), [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2), [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] and [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4) are also presented.