3 resultados para radiocarbon ages
em Digital Commons - Michigan Tech
Resumo:
Two volcanic debris avalanche deposits (VDADs), both attributed to sector collapse at Volcán Barú, Panama, have been identified after an investigation of deposits that covered more than a thousand square kilometers. The younger Barriles Deposit is constrained by two radiocarbon ages that are ~9 ka; the older Caisán Deposit is at or beyond the radiocarbon range, >43,500 ybp. The total runout length of the Caisán Deposit was ~50 km and it covers 1190 km2. The Barriles Deposit extended to about 45 km and covered an area of 966 km2, overlapping most of the Caisán. The VDADs are blanketed by pyroclastic deposits and contain a predominance of andesitic material likely representing volcanic dome rock which accumulated above the active vent at Barú before collapsing. Despite heavy vegetation in the field area, over 4000 individual hummocks were digitized from aerial photography. Statistical analysis of hummock locations and geometries depict flow patterns of highly- fragmented material reflecting the effects of underlying topography and also help to define the limit of Barriles’ shorter termination. Barriles and Caisán are primarily unconfined, subaerial volcanic deposits that are among the world’s most voluminous. Calculated through two different geospatial processes, thickness values from field measurements and inferences yield volumes >30 km23 for both deposits. VDADs of comparable scale come from Mount Shasta, USA; Socompa, Chile/Argentina; and Shiveluch, Russia. Currently, the modern edifice is 200-400m lower than the pre-collapse Barriles and Caisán summits and only 16-25% of the former edifice has been replaced since the last failure.
Resumo:
La Yeguada volcanic complex is one of three Quaternary volcanic centers in Panama, and is located on the southern slope of the Cordillera Central mountain range in western Panama, province of Veraguas. To assess potential geologic hazards, this study focused on the main dome complex near the village of La Laguna and also examined a cinder cone 10 km to the northwest next to the village of Media Luna. Based on newly obtained 40Ar/39Ar ages, the most recent eruption occurred approximately 32 000 years ago at the Media Luna cinder cone, while the youngest dated eruption at the main dome complex occurred 0.357 ± 0.019 Ma, producing the Castillo dome unit. Cerro Picacho is a separate dome located 1.5 km east of the main complex with a date of 4.47 ± 0.23 Ma, and the El Satro Pyroclastic Flow unit surrounds the northern portion of the volcanic complex and has an age of 11.26 ± 0.17 Ma. No Holocene (10 000 years ago to present) activity is recorded at the La Yeguada volcanic complex and therefore, it is unlikely to produce another eruption. The emergence of a new cinder cone is a possibility, but the associated hazards tend to be low and localized, and this does not pose a significant threat to the small communities scattered throughout the area. The main geologic hazard at the La Yeguada volcanic complex is from landslides coming off the many steep slopes.
Resumo:
Maderas volcano is a small, andesitic stratovolcano located on the island of Ometepe, in Lake Nicaragua, Nicaragua with no record of historic activity. Twenty-one samples were collected from lava flows from Maderas in 2010. Selected samples were analyzed for whole-rock geochemical data using ICP-AES and/or were dated using the 40Ar/39Ar method. The results of these analyses were combined with previously collected data from Maderas as well as field observations to determine the eruptive history of the volcano and create a geologic map. The results of the geochemical analyses indicate that Maderas is a typical Central American andesitic volcano similar to other volcanoes in Nicaragua and Costa Rica and to its nearest neighbor, Concepción volcano. It is different from Concepción in one important way – higher incompatible elements. Determined age dates range from 176.8 ± 6.1 ka to 70.5 ± 6.1 ka. Based on these ages and the geomorphology of the volcano which is characterized by a bisecting graben, it is proposed that Maderas experienced two clear generations of development with three separate phases of volcanism: initial build-up of the older cone, pre-graben lava flows, and post-graben lava flows. The ages also indicate that Maderas is markedly older than Concepción which is historically active. Results were also analyzed regarding geologic hazards. The 40Ar/39Ar ages indicate that Maderas has likely been inactive for tens of thousands of years and the risk of future volcanic eruptions is low. However, earthquake, lahar and landslide hazards exist for the communities around the volcano. The steep slopes of the eroded older cone are the most likely source of landslide and lahar hazards.