5 resultados para radar facies
em Digital Commons - Michigan Tech
Resumo:
The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.
Resumo:
In 1998-2001 Finland suffered the most severe insect outbreak ever recorded, over 500,000 hectares. The outbreak was caused by the common pine sawfly (Diprion pini L.). The outbreak has continued in the study area, Palokangas, ever since. To find a good method to monitor this type of outbreaks, the purpose of this study was to examine the efficacy of multi-temporal ERS-2 and ENVISAT SAR imagery for estimating Scots pine (Pinus sylvestris L.) defoliation. Three methods were tested: unsupervised k-means clustering, supervised linear discriminant analysis (LDA) and logistic regression. In addition, I assessed if harvested areas could be differentiated from the defoliated forest using the same methods. Two different speckle filters were used to determine the effect of filtering on the SAR imagery and subsequent results. The logistic regression performed best, producing a classification accuracy of 81.6% (kappa 0.62) with two classes (no defoliation, >20% defoliation). LDA accuracy was with two classes at best 77.7% (kappa 0.54) and k-means 72.8 (0.46). In general, the largest speckle filter, 5 x 5 image window, performed best. When additional classes were added the accuracy was usually degraded on a step-by-step basis. The results were good, but because of the restrictions in the study they should be confirmed with independent data, before full conclusions can be made that results are reliable. The restrictions include the small size field data and, thus, the problems with accuracy assessment (no separate testing data) as well as the lack of meteorological data from the imaging dates.
Resumo:
Tracking or target localization is used in a wide range of important tasks from knowing when your flight will arrive to ensuring your mail is received on time. Tracking provides the location of resources enabling solutions to complex logistical problems. Wireless Sensor Networks (WSN) create new opportunities when applied to tracking, such as more flexible deployment and real-time information. When radar is used as the sensing element in a tracking WSN better results can be obtained; because radar has a comparatively larger range both in distance and angle to other sensors commonly used in WSNs. This allows for less nodes deployed covering larger areas, saving money. In this report I implement a tracking WSN platform similar to what was developed by Lim, Wang, and Terzis. This consists of several sensor nodes each with a radar, a sink node connected to a host PC, and a Matlab© program to fuse sensor data. I have re-implemented their experiment with my WSN platform for tracking a non-cooperative target to verify their results and also run simulations to compare. The results of these tests are discussed and some future improvements are proposed.
Resumo:
Traditionally, densities of newly built roadways are checked by direct sampling (cores) or by nuclear density gauge measurements. For roadway engineers, density of asphalt pavement surfaces is essential to determine pavement quality. Unfortunately, field measurements of density by direct sampling or by nuclear measurement are slow processes. Therefore, I have explored the use of rapidly-deployed ground penetrating radar (GPR) as an alternative means of determining pavement quality. The dielectric constant of pavement surface may be a substructure parameter that correlates with pavement density, and can be used as a proxy when density of asphalt is not known from nuclear or destructive methods. The dielectric constant of the asphalt can be determined using ground penetrating radar (GPR). In order to use GPR for evaluation of road surface quality, the relationship between dielectric constants of asphalt and their densities must be established. Field measurements of GPR were taken at four highway sites in Houghton and Keweenaw Counties, Michigan, where density values were also obtained using nuclear methods in the field. Laboratory studies involved asphalt samples taken from the field sites and samples created in the laboratory. These were tested in various ways, including, density, thickness, and time domain reflectometry (TDR). In the field, GPR data was acquired using a 1000 MHz air-launched unit and a ground-coupled unit at 200 and 500 MHz. The equipment used was owned and operated by the Michigan Department of Transportation (MDOT) and available for this study for a total of four days during summer 2005 and spring 2006. The analysis of the reflected waveforms included “routine” processing for velocity using commercial software and direct evaluation of reflection coefficients to determine a dielectric constant. The dielectric constants computed from velocities do not agree well with those obtained from reflection coefficients. Perhaps due to the limited range of asphalt types studied, no correlation between density and dielectric constant was evident. Laboratory measurements were taken with samples removed from the field and samples created for this study. Samples from the field were studied using TDR, in order to obtain dielectric constant directly, and these correlated well with the estimates made from reflection coefficients. Samples created in the laboratory were measured using 1000 MHz air-launched GPR, and 400 MHz ground-coupled GPR, each under both wet and dry conditions. On the basis of these observations, I conclude that dielectric constant of asphalt can be reliably measured from waveform amplitude analysis of GJPR data, based on the consistent agreement with that obtained in the laboratory using TDR. Because of the uniformity of asphalts studied here, any correlation between dielectric constant and density is not yet apparent.