2 resultados para python django bootstrap
em Digital Commons - Michigan Tech
Resumo:
Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.
Resumo:
Hardwoods comprise about half of the biomass of forestlands in North America and present many uses including economic, ecological and aesthetic functions. Forest trees rely on the genetic variation within tree populations to overcome the many biotic, abiotic, anthropogenic factors which are further worsened by climate change, that threaten their continued survival and functionality. To harness these inherent genetic variations of tree populations, informed knowledge of the genomic resources and techniques, which are currently lacking or very limited, are imperative for forest managers. The current study therefore aimed to develop genomic microsatellite markers for the leguminous tree species, honey locust, Gleditsia triacanthos L. and test their applicability in assessing genetic variation, estimation of gene flow patterns and identification of a full-sib mapping population. We also aimed to test the usefulness of already developed nuclear and gene-based microsatellite markers in delineation of species and taxonomic relationships between four of the taxonomically difficult Section Lobatae species (Quercus coccinea, Q. ellipsoidalis, Q. rubra and Q. velutina. We recorded 100% amplification of G. triacanthos genomic microsatellites developed using Illumina sequencing techniques in a panel of seven unrelated individuals with 14 of these showing high polymorphism and reproducibility. When characterized in 36 natural population samples, we recorded 20 alleles per locus with no indication for null alleles at 13 of the 14 microsatellites. This is the first report of genomic microsatellites for this species. Honey locust trees occur in fragmented populations of abandoned farmlands and pastures and is described as essentially dioecious. Pollen dispersal if the main source of gene flow within and between populations with the ability to offset the effects of random genetic drift. Factors known to influence gene include fragmentation and degree of isolation, which make the patterns gene flow in fragmented populations of honey locust a necessity for their sustainable management. In this follow-up study, we used a subset of nine of the 14 developed gSSRs to estimate gene flow and identify a full-sib mapping population in two isolated fragments of honey locust. Our analyses indicated that the majority of the seedlings (65-100% - at both strict and relaxed assignment thresholds) were sired by pollen from outside the two fragment populations. Only one selfing event was recorded confirming the functional dioeciousness of honey locust and that the seed parents are almost completely outcrossed. From the Butternut Valley, TN population, pollen donor genotypes were reconstructed and used in paternity assignment analyses to identify a relatively large full-sib family comprised of 149 individuals, proving the usefulness of isolated forest fragments in identification of full-sib families. In the Ames Plantation stand, contemporary pollen dispersal followed a fat-tailed exponential-power distribution, an indication of effective gene flow. Our estimate of δ was 4,282.28 m, suggesting that insect pollinators of honey locust disperse pollen over very long distances. The high proportion of pollen influx into our sampled population implies that our fragment population forms part of a large effectively reproducing population. The high tendency of oak species to hybridize while still maintaining their species identity make it difficult to resolve their taxonomic relationships. Oaks of the section Lobatae are famous in this regard and remain unresolved at both morphological and genetic markers. We applied 28 microsatellite markers including outlier loci with potential roles in reproductive isolation and adaptive divergence between species to natural populations of four known interfertile red oaks, Q. coccinea, Q. ellpsoidalis, Q. rubra and Q. velutina. To better resolve the taxonomic relationships in this difficult clade, we assigned individual samples to species, identified hybrids and introgressive forms and reconstructed phylogenetic relationships among the four species after exclusion of genetically intermediate individuals. Genetic assignment analyses identified four distinct species clusters, with Q. rubra most differentiated from the three other species, but also with a comparatively large number of misclassified individuals (7.14%), hybrids (7.14%) and introgressive forms (18.83%) between Q. ellipsoidalis and Q. velutina. After the exclusion of genetically intermediate individuals, Q. ellipsoidalis grouped as sister species to the largely parapatric Q. coccinea with high bootstrap support (91 %). Genetically intermediate forms in a mixed species stand were located proximate to both potential parental species, which supports recent hybridization of Q. velutina with both Q. ellipsoidalis and Q. rubra. Analyses of genome-wide patterns of interspecific differentiation can provide a better understanding of speciation processes and taxonomic relationships in this taxonomically difficult group of red oak species.