4 resultados para product variant

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste effluents from the forest products industry are sources of lignocellulosic biomass that can be converted to ethanol by yeast after pretreatment. However, the challenge of improving ethanol yields from a mixed pentose and hexose fermentation of a potentially inhibitory hydrolysate still remains. Hardboard manufacturing process wastewater (HPW) was evaluated at a potential feedstream for lignocellulosic ethanol production by native xylose-fermenting yeast. After screening of xylose-fermenting yeasts, Scheffersomyces stipitis CBS 6054 was selected as the ideal organism for conversion of the HPW hydrolysate material. The individual and synergistic effects of inhibitory compounds present in the hydrolysate were evaluated using response surface methodology. It was concluded that organic acids have an additive negative effect on fermentations. Fermentation conditions were also optimized in terms of aeration and pH. Methods for improving productivity and achieving higher ethanol yields were investigated. Adaptation to the conditions present in the hydrolysate through repeated cell sub-culturing was used. The objectives of this present study were to adapt S. stipitis CBS6054 to a dilute-acid pretreated lignocellulosic containing waste stream; compare the physiological, metabolic, and proteomic profiles of the adapted strain to its parent; quantify changes in protein expression/regulation, metabolite abundance, and enzyme activity; and determine the biochemical and molecular mechanism of adaptation. The adapted culture showed improvement in both substrate utilization and ethanol yields compared to the unadapted parent strain. The adapted strain also represented a growth phenotype compared to its unadapted parent based on its physiological and proteomic profiles. Several potential targets that could be responsible for strain improvement were identified. These targets could have implications for metabolic engineering of strains for improved ethanol production from lignocellulosic feedstocks. Although this work focuses specifically on the conversion of HPW to ethanol, the methods developed can be used for any feedstock/product systems that employ a microbial conversion step. The benefit of this research is that the organisms will the optimized for a company's specific system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy community detection is to identify fuzzy communities in a network, which are groups of vertices in the network such that the membership of a vertex in one community is in [0,1] and that the sum of memberships of vertices in all communities equals to 1. Fuzzy communities are pervasive in social networks, but only a few works have been done for fuzzy community detection. Recently, a one-step forward extension of Newman’s Modularity, the most popular quality function for disjoint community detection, results into the Generalized Modularity (GM) that demonstrates good performance in finding well-known fuzzy communities. Thus, GMis chosen as the quality function in our research. We first propose a generalized fuzzy t-norm modularity to investigate the effect of different fuzzy intersection operators on fuzzy community detection, since the introduction of a fuzzy intersection operation is made feasible by GM. The experimental results show that the Yager operator with a proper parameter value performs better than the product operator in revealing community structure. Then, we focus on how to find optimal fuzzy communities in a network by directly maximizing GM, which we call it Fuzzy Modularity Maximization (FMM) problem. The effort on FMM problem results into the major contribution of this thesis, an efficient and effective GM-based fuzzy community detection method that could automatically discover a fuzzy partition of a network when it is appropriate, which is much better than fuzzy partitions found by existing fuzzy community detection methods, and a crisp partition of a network when appropriate, which is competitive with partitions resulted from the best disjoint community detections up to now. We address FMM problem by iteratively solving a sub-problem called One-Step Modularity Maximization (OSMM). We present two approaches for solving this iterative procedure: a tree-based global optimizer called Find Best Leaf Node (FBLN) and a heuristic-based local optimizer. The OSMM problem is based on a simplified quadratic knapsack problem that can be solved in linear time; thus, a solution of OSMM can be found in linear time. Since the OSMM algorithm is called within FBLN recursively and the structure of the search tree is non-deterministic, we can see that the FMM/FBLN algorithm runs in a time complexity of at least O (n2). So, we also propose several highly efficient and very effective heuristic algorithms namely FMM/H algorithms. We compared our proposed FMM/H algorithms with two state-of-the-art community detection methods, modified MULTICUT Spectral Fuzzy c-Means (MSFCM) and Genetic Algorithm with a Local Search strategy (GALS), on 10 real-world data sets. The experimental results suggest that the H2 variant of FMM/H is the best performing version. The H2 algorithm is very competitive with GALS in producing maximum modularity partitions and performs much better than MSFCM. On all the 10 data sets, H2 is also 2-3 orders of magnitude faster than GALS. Furthermore, by adopting a simply modified version of the H2 algorithm as a mutation operator, we designed a genetic algorithm for fuzzy community detection, namely GAFCD, where elite selection and early termination are applied. The crossover operator is designed to make GAFCD converge fast and to enhance GAFCD’s ability of jumping out of local minimums. Experimental results on all the data sets show that GAFCD uncovers better community structure than GALS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for consumer goods in the developing world continues to rise as populations and economies grow. As designers, manufacturers, and consumers look for ways to address this growing demand, many are considering the possibilities of 3D printing. Due to 3D printing’s flexibility and relative mobility, it is speculated that 3D printing could help to meet the growing demands of the developing world. While the merits and challenges of distributed manufacturing with 3D printing have been presented, little work has been done to determine the types of products that would be appropriate for such manufacturing. Inspired by the author’s two years of Peace Corps service in the Tanzania and the need for specialty equipment for various projects during that time, an in-depth literature search is undertaken to better understand and summarize the process and capabilities of 3D printing. Human-centered design considerations are developed to focus on the product desirability, the technical feasibility, and the financial viability of using 3D printing within Tanzania. Beginning with concerns of what Tanzanian consumers desire, many concerns later arise in regards to the feasibility of creating products that would be sufficient in strength and quality for the demands of developing world consumers. It is only after these concerns are addressed that the viability of products can be evaluated from an economic perspective. The larger impacts of a product beyond its use are vital in determining how it will affect the social, economic, and environmental well-being of a developing nation such as Tanzania. Thus technology specific criteria are necessary for assessing and quantifying the broader impacts that a 3D-printed product can have within its ecosystem, and appropriate criteria are developed for this purpose. Both sets of criteria are then demonstrated and tested while evaluating the desirability, feasibility, viability, and sustainability of printing a piece of equipment required for the author’s Peace Corps service: a set of Vernier calipers. Required for science educators throughout the country, specialty equipment such as calipers initially appear to be an ideal candidate for 3D printing, though ultimately the printing of calipers is not recommended due to current restrictions in the technology. By examining more specific challenges and opportunities of the products 3D printing can produce, it can be better determined what place 3D printing will have in manufacturing for the developing world. Furthermore, the considerations outlined in this paper could be adapted for other manufacturing technologies and regions of the world, as human centered design and sustainability will be critical in determining how to supply the developing world with the consumer goods it demands.