7 resultados para power system identification
em Digital Commons - Michigan Tech
Resumo:
It is an important and difficult challenge to protect modern interconnected power system from blackouts. Applying advanced power system protection techniques and increasing power system stability are ways to improve the reliability and security of power systems. Phasor-domain software packages such as Power System Simulator for Engineers (PSS/E) can be used to study large power systems but cannot be used for transient analysis. In order to observe both power system stability and transient behavior of the system during disturbances, modeling has to be done in the time-domain. This work focuses on modeling of power systems and various control systems in the Alternative Transients Program (ATP). ATP is a time-domain power system modeling software in which all the power system components can be modeled in detail. Models are implemented with attention to component representation and parameters. The synchronous machine model includes the saturation characteristics and control interface. Transient Analysis Control System is used to model the excitation control system, power system stabilizer and the turbine governor system of the synchronous machine. Several base cases of a single machine system are modeled and benchmarked against PSS/E. A two area system is modeled and inter-area and intra-area oscillations are observed. The two area system is reduced to a two machine system using reduced dynamic equivalencing. The original and the reduced systems are benchmarked against PSS/E. This work also includes the simulation of single-pole tripping using one of the base case models. Advantages of single-pole tripping and comparison of system behavior against three-pole tripping are studied. Results indicate that the built-in control system models in PSS/E can be effectively reproduced in ATP. The benchmarked models correctly simulate the power system dynamics. The successful implementation of a dynamically reduced system in ATP shows promise for studying a small sub-system of a large system without losing the dynamic behaviors. Other aspects such as relaying can be investigated using the benchmarked models. It is expected that this work will provide guidance in modeling different control systems for the synchronous machine and in representing dynamic equivalents of large power systems.
Resumo:
Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power system is presented. Based on the Matlab environment, the simulation is built by using Simulink and SimPowerSystem. There are four parts in a household solar system, solar cell, MPPT system, battery and power consumer. Solar cell and MPPT system are been studied and analyzed individually. The system with MPPT generates 30% more energy than the system without MPPT. After simulating the household system, it is can be seen that the power which generated by the system is 40.392 kWh per sunny day. By combining the power generated by the system and the price of the electric power, 8.42 years are need for the system to achieve a balance of income and expenditure when weather condition is considered.
DIMENSION REDUCTION FOR POWER SYSTEM MODELING USING PCA METHODS CONSIDERING INCOMPLETE DATA READINGS
Resumo:
Principal Component Analysis (PCA) is a popular method for dimension reduction that can be used in many fields including data compression, image processing, exploratory data analysis, etc. However, traditional PCA method has several drawbacks, since the traditional PCA method is not efficient for dealing with high dimensional data and cannot be effectively applied to compute accurate enough principal components when handling relatively large portion of missing data. In this report, we propose to use EM-PCA method for dimension reduction of power system measurement with missing data, and provide a comparative study of traditional PCA and EM-PCA methods. Our extensive experimental results show that EM-PCA method is more effective and more accurate for dimension reduction of power system measurement data than traditional PCA method when dealing with large portion of missing data set.
Resumo:
In the current market system, power systems are operated at higher loads for economic reasons. Power system stability becomes a genuine concern in such operating conditions. In case of failure of any larger component, the system may become stressed. These events may start cascading failures, which may lead to blackouts. One of the main reasons of the major recorded blackout events has been the unavailability of system-wide information. Synchrophasor technology has the capability to provide system-wide real time information. Phasor Measurement Units (PMUs) are the basic building block of this technology, which provide the Global Positioning System (GPS) time-stamped voltage and current phasor values along with the frequency. It is being assumed that synchrophasor data of all the buses is available and thus the whole system is fully observable. This information can be used to initiate islanding or system separation to avoid blackouts. A system separation strategy using synchrophasor data has been developed to answer the three main aspects of system separation: (1) When to separate: One class support machines (OC-SVM) is primarily used for the anomaly detection. Here OC-SVM was used to detect wide area instability. OC-SVM has been tested on different stable and unstable cases and it is found that OC-SVM has the capability to detect the wide area instability and thus is capable to answer the question of “when the system should be separated”. (2) Where to separate: The agglomerative clustering technique was used to find the groups of coherent buses. The lines connecting different groups of coherent buses form the separation surface. The rate of change of the bus voltage phase angles has been used as the input to this technique. This technique has the potential to exactly identify the lines to be tripped for the system separation. (3) What to do after separation: Load shedding was performed approximately equal to the sum of power flows along the candidate system separation lines should be initiated before tripping these lines. Therefore it is recommended that load shedding should be initiated before tripping the lines for system separation.
Resumo:
Wind power based generation has been rapidly growing world-wide during the recent past. In order to transmit large amounts of wind power over long distances, system planners may often add series compensation to existing transmission lines owing to several benefits such as improved steady-state power transfer limit, improved transient stability, and efficient utilization of transmission infrastructure. Application of series capacitors has posed resonant interaction concerns such as through subsynchronous resonance (SSR) with conventional turbine-generators. Wind turbine-generators may also be susceptible to such resonant interactions. However, not much information is available in literature and even engineering standards are yet to address these issues. The motivation problem for this research is based on an actual system switching event that resulted in undamped oscillations in a 345-kV series-compensated, typical ring-bus power system configuration. Based on time-domain ATP (Alternative Transients Program) modeling, simulations and analysis of system event records, the occurrence of subsynchronous interactions within the existing 345-kV series-compensated power system has been investigated. Effects of various small-signal and large-signal power system disturbances with both identical and non-identical wind turbine parameters (such as with a statistical-spread) has been evaluated. Effect of parameter variations on subsynchronous oscillations has been quantified using 3D-DFT plots and the oscillations have been identified as due to electrical self-excitation effects, rather than torsional interaction. Further, the generator no-load reactance and the rotor-side converter inner-loop controller gains have been identified as bearing maximum sensitivity to either damping or exacerbating the self-excited oscillations. A higher-order spectral analysis method based on modified Prony estimation has been successfully applied to the field records identifying dominant 9.79 Hz subsynchronous oscillations. Recommendations have been made for exploring countermeasures.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.