5 resultados para pollen load size and phenotypic variation

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat selection has been one of the main research topics in ecology for decades. Nevertheless, many aspects of habitat selection still need to be explored. In particular, previous studies have overlooked the importance of temporal variation in habitat selection and the value of including data on reproductive success in order to describe the best quality habitat for a species. We used data collected from radiocollared wolves in Yellowstone National Park (USA), between 1996 and 2008, to describe wolf habitat selection. In particular, we aimed to identify i) seasonal differences in wolf habitat selection, ii) factors influencing interannual variation in habitat selection, and iii) the effect of habitat selection on wolf reproductive success. We used probability density functions to describe wolf habitat use and habitat coverages to represent the habitat available to wolves. We used regression analysis to connect habitat use with habitat characteristics and habitat selection with reproductive success. Our most relevant result was discovering strong interannual variability in wolf habitat selection. This variability was in part explained by pack identity and differences in litter size and leadership of a pack between two years (summer) and in pack size and precipitation (winter). We also detected some seasonal differences. Wolves selected open habitats, intermediate elevations, intermediate distances from roads, and avoided steep slopes in late winter. They selected areas close to roads and avoided steep slopes in summer. In early winter, wolves selected wetlands, herbaceous and shrub vegetation types, and areas at intermediate elevation and distance from roads. Surprisingly, the habitat characteristics selected by wolves were not useful in predicting reproductive success. We hypothesize that interannual variability in wolf habitat selection may be too strong to detect effects on reproductive success. Moreover, prey availability and competitor pressure may also have an influence on wolf reproductive success, which we did not assess. This project demonstrated how important temporal variation is in shaping patterns of habitat selection. We still believe in the value of running long-term studies, but the effect of temporal variation should always be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shear-wave splitting can be a useful technique for determining crustal stress fields in volcanic settings and temporal variations associated with activity. Splitting parameters were determined for a subset of local earthquakes recorded from 2000-2010 at Yellowstone. Analysis was automated using an unsupervised cluster analysis technique to determine optimum splitting parameters from 270 analysis windows for each event. Six stations clearly exhibit preferential fast polarization values sub-orthogonal to the direction of minimum horizontal compression. Yellowstone deformation results in a local crustal stress field differing from the regional field dominated by NE-SW extension, and fast directions reflect this difference rotating around the caldera maintaining perpendicularity to the rim. One station exhibits temporal variations concordant with identified periods of caldera subsidence and uplift. From splitting measurements, we calculated a crustal anisotropy of ~17-23% and crack density ~0.12-0.17 possibly resulting from stress-aligned fluid filled microcracks in the upper crust and an active hydrothermal system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of delineating Populus tremuloides (Michx.) clonal colonies based on morphology and phenology has been utilized in many studies and forestry applications since the 1950s. Recently, the availability and robustness of molecular markers has challenged the validity of such approaches for accurate clonal identification. However, genetically sampling an entire stand is largely impractical or impossible. For that reason, it is often necessary to delineate putative genet boundaries for a more selective approach when genetically analyzing a clonal population. Here I re-evaluated the usefulness of phenotypic delineation by: (1) genetically identifying clonal colonies using nuclear microsatellite markers, (2) assessing phenotypic inter- and intraclonal agreement, and (3) determining the accuracy of visible characters to correctly assign ramets to their respective genets. The long-term soil productivity study plot 28 was chosen for analysis and is located in the Ottawa National Forest, MI (46° 37'60.0" N, 89° 12'42.7" W). In total, 32 genets were identified from 181 stems using seven microsatellite markers. The average genet size was 5.5 ramets and six of the largest were selected for phenotypic analyses. Phenotypic analyses included budbreak timing, DBH, bark thickness, bark color or brightness, leaf senescence, leaf serrations, and leaf length ratio. All phenotypic characters, except for DBH, were useful for the analysis of inter- and intraclonal variation and phenotypic delineation. Generally, phenotypic expression was related to genotype with multiple response permutation procedure (MRPP) intraclonal distance values ranging from 0.148 and 0.427 and an observed MRPP delta value=0.221 when the expected delta=0.5. The phenotypic traits, though, overlapped significantly among some clones. When stems were assigned into phenotypic groups, six phenotypic groups were identified with each group containing a dominant genotype or clonal colony. All phenotypic groups contained stems from at least two clonal colonies and no clonal colony was entirely contained within one phenotypic group. These results demonstrate that phenotype varies with genotype and stand clonality can be determined using phenotypic characters, but phenotypic delineation is less precise. I therefore recommend that some genetic identification follow any phenotypic delineation. The amount of genetic identification required for clonal confirmation is likely to vary based on stand and environmental conditions. Further analysis, however, is needed to test these findings in other forest stands and populations.