3 resultados para phasor measurement unit (PMU)

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbances in power systems may lead to electromagnetic transient oscillations due to mismatch of mechanical input power and electrical output power. Out-of-step conditions in power system are common after the disturbances where the continuous oscillations do not damp out and the system becomes unstable. Existing out-of-step detection methods are system specific as extensive off-line studies are required for setting of relays. Most of the existing algorithms also require network reduction techniques to apply in multi-machine power systems. To overcome these issues, this research applies Phasor Measurement Unit (PMU) data and Zubov’s approximation stability boundary method, which is a modification of Lyapunov’s direct method, to develop a novel out-of-step detection algorithm. The proposed out-of-step detection algorithm is tested in a Single Machine Infinite Bus system, IEEE 3-machine 9-bus, and IEEE 10-machine 39-bus systems. Simulation results show that the proposed algorithm is capable of detecting out-of-step conditions in multi-machine power systems without using network reduction techniques and a comparative study with an existing blinder method demonstrate that the decision times are faster. The simulation case studies also demonstrate that the proposed algorithm does not depend on power system parameters, hence it avoids the need of extensive off-line system studies as needed in other algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current market system, power systems are operated at higher loads for economic reasons. Power system stability becomes a genuine concern in such operating conditions. In case of failure of any larger component, the system may become stressed. These events may start cascading failures, which may lead to blackouts. One of the main reasons of the major recorded blackout events has been the unavailability of system-wide information. Synchrophasor technology has the capability to provide system-wide real time information. Phasor Measurement Units (PMUs) are the basic building block of this technology, which provide the Global Positioning System (GPS) time-stamped voltage and current phasor values along with the frequency. It is being assumed that synchrophasor data of all the buses is available and thus the whole system is fully observable. This information can be used to initiate islanding or system separation to avoid blackouts. A system separation strategy using synchrophasor data has been developed to answer the three main aspects of system separation: (1) When to separate: One class support machines (OC-SVM) is primarily used for the anomaly detection. Here OC-SVM was used to detect wide area instability. OC-SVM has been tested on different stable and unstable cases and it is found that OC-SVM has the capability to detect the wide area instability and thus is capable to answer the question of “when the system should be separated”. (2) Where to separate: The agglomerative clustering technique was used to find the groups of coherent buses. The lines connecting different groups of coherent buses form the separation surface. The rate of change of the bus voltage phase angles has been used as the input to this technique. This technique has the potential to exactly identify the lines to be tripped for the system separation. (3) What to do after separation: Load shedding was performed approximately equal to the sum of power flows along the candidate system separation lines should be initiated before tripping these lines. Therefore it is recommended that load shedding should be initiated before tripping the lines for system separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.