3 resultados para paradigm shift

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly 22 million Americans operate as shift workers, and shift work has been linked to the development of cardiovascular disease (CVD). This study is aimed at identifying pivotal risk factors of CVD by assessing 24 hour ambulatory blood pressure, state anxiety levels and sleep patterns in 12 hour fixed shift workers. We hypothesized that night shift work would negatively affect blood pressure regulation, anxiety levels and sleep patterns. A total of 28 subjects (ages 22-60) were divided into two groups: 12 hour fixed night shift workers (n=15) and 12 hour fixed day shift workers (n=13). 24 hour ambulatory blood pressure measurements (Space Labs 90207) were taken twice: once during a regular work day and once on a non-work day. State anxiety levels were assessed on both test days using the Speilberger’s State Trait Anxiety Inventory. Total sleep time (TST) was determined using self recorded sleep diary. Night shift workers demonstrated increases in 24 hour systolic (122 ± 2 to 126 ± 2 mmHg, P=0.012); diastolic (75 ± 1 to 79 ± 2 mmHg, P=0.001); and mean arterial pressures (90 ± 2 to 94 ± 2mmHg, P<0.001) during work days compared to off days. In contrast, 24 hour blood pressures were similar during work and off days in day shift workers. Night shift workers reported less TST on work days versus off days (345 ± 16 vs. 552 ± 30 min; P<0.001), whereas day shift workers reported similar TST during work and off days (475 ± 16 minutes to 437 ± 20 minutes; P=0.231). State anxiety scores did not differ between the groups or testing days (time*group interaction P=0.248), suggesting increased 24 hour blood pressure during night shift work is related to decreased TST, not short term anxiety. Our findings suggest that fixed night shift work causes disruption of the normal sleep-wake cycle negatively affecting acute blood pressure regulation, which may increase the long-term risk for CVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many complex and dynamic domains, the ability to generate and then select the appropriate course of action is based on the decision maker's "reading" of the situation--in other words, their ability to assess the situation and predict how it will evolve over the next few seconds. Current theories regarding option generation during the situation assessment and response phases of decision making offer contrasting views on the cognitive mechanisms that support superior performance. The Recognition-Primed Decision-making model (RPD; Klein, 1989) and Take-The-First heuristic (TTF; Johnson & Raab, 2003) suggest that superior decisions are made by generating few options, and then selecting the first option as the final one. Long-Term Working Memory theory (LTWM; Ericsson & Kintsch, 1995), on the other hand, posits that skilled decision makers construct rich, detailed situation models, and that as a result, skilled performers should have the ability to generate more of the available task-relevant options. The main goal of this dissertation was to use these theories about option generation as a way to further the understanding of how police officers anticipate a perpetrator's actions, and make decisions about how to respond, during dynamic law enforcement situations. An additional goal was to gather information that can be used, in the future, to design training based on the anticipation skills, decision strategies, and processes of experienced officers. Two studies were conducted to achieve these goals. Study 1 identified video-based law enforcement scenarios that could be used to discriminate between experienced and less-experienced police officers, in terms of their ability to anticipate the outcome. The discriminating scenarios were used as the stimuli in Study 2; 23 experienced and 26 less-experienced police officers observed temporally-occluded versions of the scenarios, and then completed assessment and response option-generation tasks. The results provided mixed support for the nature of option generation in these situations. Consistent with RPD and TTF, participants typically selected the first-generated option as their final one, and did so during both the assessment and response phases of decision making. Consistent with LTWM theory, participants--regardless of experience level--generated more task-relevant assessment options than task-irrelevant options. However, an expected interaction between experience level and option-relevance was not observed. Collectively, the two studies provide a deeper understanding of how police officers make decisions in dynamic situations. The methods developed and employed in the studies can be used to investigate anticipation and decision making in other critical domains (e.g., nursing, military). The results are discussed in relation to how they can inform future studies of option-generation performance, and how they could be applied to develop training for law enforcement officers.