11 resultados para outputs
em Digital Commons - Michigan Tech
Resumo:
This report presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. Knock Signal Simulator (KSS) was developed as the plant model for the engine. The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies. The SKD method is implemented in Knock Detection Module (KDM) which processes the knock intensities generated by KSS with a stochastic distribution estimation algorithm and outputs estimates of high and low knock intensity levels which characterize knock and reference level respectively. These estimates are then used to determine a knock factor which provides quantitative measure of knock level and can be used as a feedback signal to control engine knock. The knock factor is analyzed and compared with a traditional knock detection method to detect engine knock under various engine operating conditions. To verify the effectiveness of the SKD method, a knock controller was also developed and tested in a model-in-loop (MIL) system. The objective of the knock controller is to allow the engine to operate as close as possible to its border-line spark-timing without significant engine knock. The controller parameters were tuned to minimize the cycle-to-cycle variation in spark timing and the settling time of the controller in responding to step increase in spark advance resulting in the onset of engine knock. The simulation results showed that the combined system can be used adequately to model engine knock and evaluated knock control strategies for a wide range of engine operating conditions.
Resumo:
Small-scale village woodlots of less than 0.5ha are the preferred use of land for local farmers with extra land in the village of Isangati, a small community located in the southern highlands of Tanzania. Farmers view woodlots as lucrative investments that do not involve intensive labor or time. The climate is ideal for the types of trees grown and the risks are minimal with no serious threats from insects, fires, thieves, or grazing livestock. It was hypothesized that small-scale village woodlot owners were not maximizing timber outputs with their current timber stand management and harvesting techniques. Personal interviews were conducted over a five month period and field data was collected at each farmer’s woodlots over a seven month period. Woodlot field data included woodlot size, number of trees, tree species, tree height, dbh, age, and spacing. The results indicated that the lack of proper woodlot management techniques results in failure to fully capitalize on the investment of woodlots. While farmers should continue with their current harvesting rotations, some of the reasons for not maximizing tree growth include close spacing (2m x 2m), no tree thinning, extreme pruning (60% of tree), and little to no weeding. Through education and hands-on woodlot management workshops, the farmers could increase their timber output and value of woodlots.
Resumo:
Invasive exotic plants have altered natural ecosystems across much of North America. In the Midwest, the presence of invasive plants is increasing rapidly, causing changes in ecosystem patterns and processes. Early detection has become a key component in invasive plant management and in the detection of ecosystem change. Risk assessment through predictive modeling has been a useful resource for monitoring and assisting with treatment decisions for invasive plants. Predictive models were developed to assist with early detection of ten target invasive plants in the Great Lakes Network of the National Park Service and for garlic mustard throughout the Upper Peninsula of Michigan. These multi-criteria risk models utilize geographic information system (GIS) data to predict the areas at highest risk for three phases of invasion: introduction, establishment, and spread. An accuracy assessment of the models for the ten target plants in the Great Lakes Network showed an average overall accuracy of 86.3%. The model developed for garlic mustard in the Upper Peninsula resulted in an accuracy of 99.0%. Used as one of many resources, the risk maps created from the model outputs will assist with the detection of ecosystem change, the monitoring of plant invasions, and the management of invasive plants through prioritized control efforts.
Resumo:
This research initiative was triggered by the problems of water management of Polymer Electrolyte Membrane Fuel Cell (PEMFC). In low temperature fuel cells such as PEMFC, some of the water produced after the chemical reaction remains in its liquid state. Excess water produced by the fuel cell must be removed from the system to avoid flooding of the gas diffusion layers (GDL). The GDL is responsible for the transport of reactant gas to the active sites and remove the water produced from the sites. If the GDL is flooded, the supply gas will not be able to reach the reactive sites and the fuel cell fails. The choice of water removal method in this research is to exert a variable asymmetrical force on a liquid droplet. As the drop of liquid is subjected to an external vibrational force in the form of periodic wave, it will begin to oscillate. A fluidic oscillator is capable to produce a pulsating flow using simple balance of momentum fluxes between three impinging jets. By connecting the outputs of the oscillator to the gas channels of a fuel cell, a flow pulsation can be imposed on a water droplet formed within the gas channel during fuel cell operation. The lowest frequency produced by this design is approximately 202 Hz when a 20 inches feed-back port length was used and a supply pressure of 5 psig was introduced. This information was found by setting up a fluidic network with appropriate data acquisition. The components include a fluidic amplifier, valves and fittings, flow meters, a pressure gage, NI-DAQ system, Siglab®, Matlab software and four PCB microphones. The operating environment of the water droplet was reviewed, speed of the sound pressure which travels down the square channel was precisely estimated, and measurement devices were carefully selected. Applicable alternative measurement devices and its application to pressure wave measurement was considered. Methods for experimental setup and possible approaches were recommended, with some discussion of potential problems with implementation of this technique. Some computational fluid dynamic was also performed as an approach to oscillator design.
Resumo:
This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.
Resumo:
This thesis studies the minimization of the fuel consumption for a Hybrid Electric Vehicle (HEV) using Model Predictive Control (MPC). The presented MPC – based controller calculates an optimal sequence of control inputs to a hybrid vehicle using the measured plant outputs, the current dynamic states, a system model, system constraints, and an optimization cost function. The MPC controller is developed using Matlab MPC control toolbox. To evaluate the performance of the presented controller, a power-split hybrid vehicle, 2004 Toyota Prius, is selected. The vehicle uses a planetary gear set to combine three power components, an engine, a motor, and a generator, and transfer energy from these components to the vehicle wheels. The planetary gear model is developed based on the Willis’s formula. The dynamic models of the engine, the motor, and the generator, are derived based on their dynamics at the planetary gear. The MPC controller for HEV energy management is validated in the MATLAB/Simulink environment. Both the step response performance (a 0 – 60 mph step input) and the driving cycle tracking performance are evaluated. Two standard driving cycles, Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule (HWFET), are used in the evaluation tests. For the UDDS and HWFET driving cycles, the simulation results, the fuel consumption and the battery state of charge, using the MPC controller are compared with the simulation results using the original vehicle model in Autonomie. The MPC approach shows the feasibility to improve vehicle performance and minimize fuel consumption.
Resumo:
Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.
Resumo:
The combustion strategy in a diesel engine has an impact on the emissions, fuel consumption and the exhaust temperatures. The PM mass retained in the CPF is a function of NO2 and PM concentrations in addition to the exhaust temperatures and the flow rates. Thus the engine combustion strategy affects exhaust characteristics which has an impact on the CPF operation and PM mass retained and oxidized. In this report, a process has been developed to simulate the relationship between engine calibration, performance and HC and PM oxidation in the DOC and CPF respectively. Fuel Rail Pressure (FRP) and Start of Injection (SOI) sweeps were carried out at five steady state engine operating conditions. This data, along with data from a previously carried out surrogate HD-FTP cycle [1], was used to create a transfer function model which estimates the engine out emissions, flow rates, temperatures for varied FRP and SOI over a transient cycle. Four different calibrations (test cases) were considered in this study, which were simulated through the transfer function model and the DOC model [1, 2]. The DOC outputs were then input into a model which simulates the NO2 assisted and thermal PM oxidation inside a CPF. Finally, results were analyzed as to how engine calibration impacts the engine fuel consumption, HC oxidation in the DOC and the PM oxidation in the CPF. Also, active regeneration for various test cases was simulated and a comparative analysis of the fuel penalties involved was carried out.
Resumo:
The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.
Resumo:
A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.
Resumo:
Much of the research in the field of participatory modeling (PM) has focused on the developed world. Few cases are focused on developing regions, and even fewer on Latin American developing countries. The work that has been done in Latin America has often involved water management, often specifically involving water users, and has not focused on the decision making stage of the policy cycle. Little work has been done to measure the effect PM may have on the perceptions and beliefs of decision makers. In fact, throughout the field of PM, very few attempts have been made to quantitatively measure changes in participant beliefs and perceptions following participation. Of the very few exceptions, none have attempted to measure the long-term change in perceptions and beliefs. This research fills that gap. As part of a participatory modeling project in Sonora, Mexico, a region with water quantity and quality problems, I measured the change in beliefs among participants about water models: ability to use and understand them, their usefulness, and their accuracy. I also measured changes in beliefs about climate change, and about water quantity problems, specifically the causes, solutions, and impacts. I also assessed participant satisfaction with the process and outputs from the participatory modeling workshops. Participants were from water agencies, academic institutions, NGOs, and independent consulting firms. Results indicated that participant comfort and self-efficacy with water models, their beliefs in the usefulness of water models, and their beliefs about the impact of water quantity problems changed significantly as a result of the workshops. I present my findings and discuss the results.