4 resultados para osteoblasts

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delivery of oxygen, nutrients, and the removal of waste are essential for cellular survival. Culture systems for 3D bone tissue engineering have addressed this issue by utilizing perfusion flow bioreactors that stimulate osteogenic activity through the delivery of oxygen and nutrients by low-shear fluid flow. It is also well established that bone responds to mechanical stimulation, but may desensitize under continuous loading. While perfusion flow and mechanical stimulation are used to increase cellular survival in vitro, 3D tissue-engineered constructs face additional limitations upon in vivo implantation. As it requires significant amounts of time for vascular infiltration by the host, implants are subject to an increased risk of necrosis. One solution is to introduce tissue-engineered bone that has been pre-vascularized through the co-culture of osteoblasts and endothelial cells on 3D constructs. It is unclear from previous studies: 1) how 3D bone tissue constructs will respond to partitioned mechanical stimulation, 2) how gene expression compares in 2D and in 3D, 3) how co-cultures will affect osteoblast activity, and 4) how perfusion flow will affect co-cultures of osteoblasts and endothelial cells. We have used an integrated approach to address these questions by utilizing mechanical stimulation, perfusion flow, and a co-culture technique to increase the success of 3D bone tissue engineering. We measured gene expression of several osteogenic and angiogenic genes in both 2D and 3D (static culture and mechanical stimulation), as well as in 3D cultures subjected to perfusion flow, mechanical stimulation and partitioned mechanical stimulation. Finally, we co-cultured osteoblasts and endothelial cells on 3D scaffolds and subjected them to long-term incubation in either static culture or under perfusion flow to determine changes in gene expression as well as histological measures of osteogenic and angiogenic activity. We discovered that 2D and 3D osteoblast cultures react differently to shear stress, and that partitioning mechanical stimulation does not affect gene expression in our model. Furthermore, our results suggest that perfusion flow may rescue 3D tissue-engineered constructs from hypoxic-like conditions by reducing hypoxia-specific gene expression and increasing histological indices of both osteogenic and angiogenic activity. Future research to elucidate the mechanisms behind these results may contribute to a more mature bone-like structure that integrates more quickly into host tissue, increasing the potential of bone tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia – cell’s foot used for locomotion – anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering and regenerative medicine have emerged in an effort to generate replacement tissues capable of restoring native tissue structure and function, but because of the complexity of biologic system, this has proven to be much harder than originally anticipated. Silica based bioactive glasses are popular as biomaterials because of their ability to enhance osteogenesis and angiogenesis. Sol-gel processing methods are popular in generating these materials because it offers: 1) mild processing conditions; 2) easily controlled structure and composition; 3) the ability to incorporate biological molecules; and 4) inherent biocompatibility. The goal of this work was to develop a bioactive vaporization system for the deposition of silica sol-gel particles as a means to modify the material properties of a substrate at the nano- and micro- level to better mimic the instructive conditions of native bone tissue, promoting appropriate osteoblast attachment, proliferation, and differentiation as a means for supporting bone tissue regeneration. The size distribution, morphology and degradation behavior of the vapor deposited sol-gel particles developed here were found to be dependent upon formulation (H2O:TMOS, pH, Ca/P incorporation) and manufacturing (substrate surface character, deposition time). Additionally, deposition of these particles onto substrates can be used to modify overall substrate properties including hydrophobicity, roughness, and topography. Deposition of Ca/P sol particles induced apatite-like mineral formation on both two- and three-dimensional materials when exposed to body fluids. Gene expression analysis suggests that Ca/P sol particles induce upregulation osteoblast gene expression (Runx2, OPN, OCN) in preosteoblasts during early culture time points. Upon further modification-specifically increasing particle stability-these Ca/P sol particles possess the potential to serve as a simple and unique means to modify biomaterial surface properties as a means to direct osteoblast differentiation.