2 resultados para organic solvents
em Digital Commons - Michigan Tech
Boron nitride nanotubes : synthesis, characterization, functionalization, and potential applications
Resumo:
Boron nitride nanotubes (BNNTs) are structurally similar to carbon nanotubes (CNTs), but exhibit completely different physical and chemical properties. Thus, BNNTs with various interesting properties may be complementary to CNTs and provide an alternative perspective to be useful in different applications. However, synthesis of high quality of BNNTs is still challenging. Hence, the major goals of this research work focus on the fundamental study of synthesis, characterizations, functionalization, and explorations of potential applications. In this work, we have established a new growth vapor trapping (GVT) approach to produce high quality and quantity BNNTs on a Si substrate, by using a conventional tube furnace. This chemical vapor deposition (CVD) approach was conducted at a growth temperature of 1200 °C. As compared to other known approaches, our GVT technique is much simpler in experimental setup and requires relatively lower growth temperatures. The as-grown BNNTs are fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Energy Filtered Mapping, Raman spectroscopy, Fourier Transform Infra Red spectroscopy (FTIR), UV-Visible (UV-vis) absorption spectroscopy, etc. Following this success, the growth of BNNTs is now as convenient as growing CNTs and ZnO nanowires. Some important parameters have been identified to produce high-quality BNNTs on Si substrates. Furthermore, we have identified a series of effective catalysts for patterned growth of BNNTs at desirable or pre-defined locations. This catalytic CVD technique is achieved based on our finding that MgO, Ni or Fe are the good catalysts for the growth of BNNTs. The success of patterned growth not only explains the role of catalysts in the formation of BNNTs, this technique will also become technologically important for future device fabrication of BNNTs. Following our success in controlled growth of BNNTs on substrates, we have discovered the superhydrophobic behavior of these partially vertically aligned BNNTs. Since BNNTs are chemically inert, resistive to oxidation up to ~1000°C, and transparent to UV-visible light, our discovery suggests that BNNTs could be useful as self-cleaning, insulating and protective coatings under rigorous chemical and thermal conditions. We have also established various approaches to functionalize BNNTs with polymeric molecules and carbon coatings. First, we showed that BNNTs can be functionalized by mPEG-DSPE (Polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a bio-compatible polymer that helps disperse and dissolve BNNTs in water solution. Furthermore, well-dispersed BNNTs in water can be cut from its original length of >10µm to(>20hrs). This success is an essential step to implement BNNTs in biomedical applications. On the other hand, we have also succeeded to functionalize BNNTs with various conjugated polymers. This success enables the dispersion of BNNTs in organic solvents instead of water. Our approaches are useful for applications of BNNTs in high-strength composites. In addition, we have also functionalized BNNTs with carbon decoration. This was performed by introducing methane (CH4) gas into the growth process of BNNT. Graphitic carbon coatings can be deposited on the side wall of BNNTs with thicknesses ranging from 2 to 5 nm. This success can modulate the conductivity of pure BNNTs from insulating to weakly electrically conductive. Finally, efforts were devoted to explore the application of the wide bandgap BNNTs in solar-blind deep UV (DUV) photo-detectors. We found that photoelectric current generated by the DUV light was dominated in the microelectrodes of our devices. The contribution of photocurrent from BNNTs is not significant if there is any. Implication from these preliminary experiments and potential future work are discussed.
Resumo:
Metal-organic frameworks (MOFs) obtained much attention because of their unusual structures and properties as well as their potential applications. This dissertation research was focused on (1) the effects of synthesis conditions on the structures of MOFs, (2) the thermal stability of MOFs, (3) pressure-induced amorphization, and (4) the effect of high-valent ions on the structure of a MOF. This research demonstrated that the crystal structure of MOF-5 could be controlled by drying solvents. If the vacuum solvent is dimethylformamide (DMF), the crystal structure of MOF-5 is tetragonal. In contrast, if the DMF is displaced by CH2Cl2 before the vacuum, the obtained MOF-5 occupies a cubic structure. Furthermore, it was found that the tetragonal MOF-5 exhibited a mediate surface area (300-1000 m2/g). The surface area of tetragonal MOF-5 is also dependent on Zn(NO3)2/H2BDC (H2BDC: terephthalic acid) molar ratios used for its synthesis. The optimum ratio is 1.38, at which synthesized tetragonal MOF-5 exhibits the highest crystallinity and surface area (1297 m2/g). The thermal stability and decomposition of MOF-5 were systematically investigated. The thermal decomposition of cubic and tetragonal MOF-5s resulted in the same products: CO2, benzene, amorphous carbon, and crystal ZnO. The thermal decomposition is due to breaking carboxylic bridges between benzene rings and Zn4O clusters. Identifying structural relationships between crystalline and noncrystalline states is of fundamental interest in materials research. Currently, amorphization of solid materials at ambient temperature requires an ultra-high pressure (several GPa). However, this research demonstrated that MOF-5 and IRMOF-8 can be irreversibly amorphized at ambient temperature by employing a low compressing pressure of 3.5 MPa, which is 100 times lower than that required for amorphization of other solids. Furthermore, the pressure-induced amorphization (PIA) of MOFs is strongly dependent on the changeability of bond angles. If the geometric structure of a MOF can allow bond angles to be changed without breaking bonds, it can easily be amorphized by compression. This can explain why MOF-5 and IRMOF-8 can easily be amorphized via compression than Cu-BTC. It is generally recognized that zeolitic imidazolate frameworks (ZIFs) occupy much higher stability than other types of MOFs. The representative of ZIFs is Zn(2-methylimidazole)2 (ZIF-8) exhibiting high-decomposition temperature and high chemical resistance to various solvents. However, so far, it is still unknown whether the high stability of ZIF-8 can be challenged by ions, which is important for its modification by doping ions. In this research, we performed aqueous salt solution treatment on ZIF-8, and the results showed that anions (Cl¯ and NO3¯) in a solution exhibited no effect on the crystal structure of ZIF-8. However, the effect of cations (in a solution) on structure of ZIF-8 strongly depends on the cation valences. The univalent metal cations showed no effect on the structure of ZIF-8, whereas the bivalent or higher-valent metal cations caused the collapse of ZIF-8 crystal structure. Therefore, structure stability of ZIF-8 is considered when it is subjected to the application, in which high-valent metal cations are involved.