3 resultados para nonlinear boundary conditions

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid films, evaporating or non-evaporating, are ubiquitous in nature and technology. The dynamics of evaporating liquid films is a study applicable in several industries such as water recovery, heat exchangers, crystal growth, drug design etc. The theory describing the dynamics of liquid films crosses several fields such as engineering, mathematics, material science, biophysics and volcanology to name a few. Interfacial instabilities typically manifest by the undulation of an interface from a presumed flat state or by the onset of a secondary flow state from a primary quiescent state or both. To study the instabilities affecting liquid films, an evaporating/non-evaporating Newtonian liquid film is subject to a perturbation. Numerical analysis is conducted on configurations of such liquid films being heated on solid surfaces in order to examine the various stabilizing and destabilizing mechanisms that can cause the formation of different convective structures. These convective structures have implications towards heat transfer that occurs via this process. Certain aspects of this research topic have not received attention, as will be obvious from the literature review. Static, horizontal liquid films on solid surfaces are examined for their resistance to long wave type instabilities via linear stability analysis, method of normal modes and finite difference methods. The spatiotemporal evolution equation, available in literature, describing the time evolution of a liquid film heated on a solid surface, is utilized to analyze various stabilizing/destabilizing mechanisms affecting evaporating and non-evaporating liquid films. The impact of these mechanisms on the film stability and structure for both buoyant and non-buoyant films will be examined by the variation of mechanical and thermal boundary conditions. Films evaporating in zero gravity are studied using the evolution equation. It is found that films that are stable to long wave type instabilities in terrestrial gravity are prone to destabilization via long wave instabilities in zero gravity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green’s function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the literature and in-house experimental procedures including comparison against viscoelastic dampers.