2 resultados para non-traditional research
em Digital Commons - Michigan Tech
Resumo:
As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.
Resumo:
The use of intriguing open-ended quick-write prompts within the Basotho science classroom could potentially provide a way for secondary teachers in Lesotho to have a time-efficient alternative to stimulate student thinking and increase critical thinking or application of scientific principles. Writing can be used as a powerful means to improve the achievement of students across many subject areas, including the sciences (Moore, 1993; Rivard, 1994; Rillero, Zambo, Cleland, and Ryan, 1996; Greenstein, 2013). This study focuses on the use of a non-traditional nor extensively studied writing method that could potentially support learning in science. A quasi-experimental research design, with a control and experimental group, was applied. The study was conducted at two schools, with one experimental classroom in one school and a second control group classroom in the second school for a period of 4 weeks. 51 Form B (US Grade 9 equivalent) students participated as the experimental group and 43 Form B students as the control group. In an effort to assess learning achievement, a 1 hour (35 mark) pre-test evaluation was made by and given to students by Basotho teachers at the beginning of this study to have an idea of student’s previous knowledge. Topics covered were Static Electricity, Current Electricity, Electromagnetic Waves, and Chemistry of Water. After the experimental trial period, an almost completely identical post-test evaluation was given to students in the same fashion to observe and compare gains in achievement. Test data was analyzed using an inferential statistics procedure that compared means and gains in knowledge made by the experimental and control groups. Difference between the gains of mean pre-test and post-test scores were statistically significant within each group, but were not statistically significant when the control and experimental groups were compared. Therefore, there was no clear practical effect. Qualitative data from teachers’ journals and students’ written feedback provides insight on the assessments, incorporation of the teaching method, and the development of participating students. Both mid and post-study student feedback shows that students had an overall positive and beneficial experience participating in this activity. Assessments and teacher journals showed areas of strength and weaknesses in student learning and on differences in teaching styles. They also helped support some feedback claims made by students. Areas of further research and improvement of the incorporation of this teaching method in the Basotho secondary science classroom are explored.