3 resultados para multiple linear regression
em Digital Commons - Michigan Tech
Resumo:
In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.
Resumo:
There is a need by engine manufactures for computationally efficient and accurate predictive combustion modeling tools for integration in engine simulation software for the assessment of combustion system hardware designs and early development of engine calibrations. This thesis discusses the process for the development and validation of a combustion modeling tool for Gasoline Direct Injected Spark Ignited Engine with variable valve timing, lift and duration valvetrain hardware from experimental data. Data was correlated and regressed from accepted methods for calculating the turbulent flow and flame propagation characteristics for an internal combustion engine. A non-linear regression modeling method was utilized to develop a combustion model to determine the fuel mass burn rate at multiple points during the combustion process. The computational fluid dynamic software Converge ©, was used to simulate and correlate the 3-D combustion system, port and piston geometry to the turbulent flow development within the cylinder to properly predict the experimental data turbulent flow parameters through the intake, compression and expansion processes. The engine simulation software GT-Power © is then used to determine the 1-D flow characteristics of the engine hardware being tested to correlate the regressed combustion modeling tool to experimental data to determine accuracy. The results of the combustion modeling tool show accurate trends capturing the combustion sensitivities to turbulent flow, thermodynamic and internal residual effects with changes in intake and exhaust valve timing, lift and duration.
Resumo:
This research evaluated an Intelligent Compaction (IC) unit on the M-189 highway reconstruction project at Iron River, Michigan. The results from the IC unit were compared to several traditional compaction measurement devices including Nuclear Density Gauge (NDG), Geogauge, Light Weight Deflectometer (LWD), Dynamic Cone Penetrometer (DCP), and Modified Clegg Hammer (MCH). The research collected point measurements data on a test section in which 30 test locations on the final Class II sand base layer and the 22A gravel layer. These point measurements were compared with the IC measurements (ICMVs) on a point-to-point basis through a linear regression analysis. Poor correlations were obtained among different measurements points using simple regression analysis. When comparing the ICMV to the compaction measurements points. Factors attributing to the weak correlation include soil heterogeneity, variation in IC roller operation parameters, in-place moisture content, the narrow range of the compaction devices measurement ranges and support conditions of the support layers. After incorporating some of the affecting factors into a multiple regression analysis, the strength of correlation significantly improved, especially on the stiffer gravel layer. Measurements were also studied from an overall distribution perspective in terms of average, measurement range, standard deviation, and coefficient of variance. Based on data analysis, on-site project observation and literature review, conclusions were made on how IC performed in regards to compaction control on the M-189 reconstruction project.