3 resultados para movement analysis

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over 2 million Anterior Cruciate Ligament (ACL) injuries occur annually worldwide resulting in considerable economic and health burdens (e.g., suffering, surgery, loss of function, risk for re-injury, and osteoarthritis). Current screening methods are effective but they generally rely on expensive and time-consuming biomechanical movement analysis, and thus are impractical solutions. In this dissertation, I report on a series of studies that begins to investigate one potentially efficient alternative to biomechanical screening, namely skilled observational risk assessment (e.g., having experts estimate risk based on observations of athletes movements). Specifically, in Study 1 I discovered that ACL injury risk can be accurately and reliably estimated with nearly instantaneous visual inspection when observed by skilled and knowledgeable professionals. Modern psychometric optimization techniques were then used to develop a robust and efficient 5-item test of ACL injury risk prediction skill—i.e., the ACL Injury-Risk-Estimation Quiz or ACL-IQ. Study 2 cross-validated the results from Study 1 in a larger representative sample of both skilled (Exercise Science/Sports Medicine) and un-skilled (General Population) groups. In accord with research on human expertise, quantitative structural and process modeling of risk estimation indicated that superior performance was largely mediated by specific strategies and skills (e.g., ignoring irrelevant information), independent of domain general cognitive abilities (e.g., metal rotation, general decision skill). These cognitive models suggest that ACL-IQ is a trainable skill, providing a foundation for future research and applications in training, decision support, and ultimately clinical screening investigations. Overall, I present the first evidence that observational ACL injury risk prediction is possible including a robust technology for fast, accurate and reliable measurement—i.e., the ACL-IQ. Discussion focuses on applications and outreach including a web platform that was developed to house the test, provide a repository for further data collection, and increase public and professional awareness and outreach (www.ACL-IQ.org). Future directions and general applications of the skilled movement analysis approach are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mount Meager Volcanic Complex (MMVC) in south-western British Columbia is a potentially active, hydrothermally altered massif comprising a series of steep, glaciated peaks. Climatic conditions and glacial retreat has led to the further weathering, exposure and de-buttressing of steep slopes composed of weak, unconsolidated material. This has resulted in an increased frequency of landslide events over the past few decades, many of which have dammed the rivers bordering the Complex. The breach of these debris dams presents a risk of flooding to the downstream communities. Preliminary mapping showed there are numerous sites around the Complex where future failure could occur. Some of these areas are currently undergoing progressive slope movement and display features to support this such as anti-scarps and tension cracks. The effect of water infiltration on stability was modelled using the Rocscience program Slide 6.0. The main site of focus was Mount Meager in the south- east of the Complex where the most recent landslide took place. Two profiles through Mount Meager were analysed along with one other location in the northern section of the MMVC, where instability had been detected. The lowest Factor of Safety (FOS) for each profile was displayed and an estimate of the volume which could be generated was deduced. A hazard map showing the inundation zones for various volumes of debris flows was created from simulations using LAHARZ. Results showed the massif is unstable, even before infiltration. Varying the amount of infiltration appears to have no significant impact on the FOS annually implying that small changes of any kind could also trigger failure. Further modelling could be done to assess the impact of infiltration over shorter time scales. The Slide models show the volume of material that could be delivered to the Lillooet River Valley to be of the order of 109 m3 which, based on the LAHARZ simulations, would completely inundate the valley and communities downstream. A major hazard of this is that the removal of such a large amount of material has the potential to trigger an explosive eruption of the geothermal system and renew volcanic activity. Although events of this size are infrequent, there is a significant risk to the communities downstream of the complex.