2 resultados para mouse epidermal melanocytes

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a progressive disease affecting skeletal and cardiac muscle, as well as bone. Long term disuse and glucocorticoid treatments cause progressive osteoporosis in DMD patients, leading to an increase in fracture incidence. Treatments for osteoporosis in these patients have not been widely explored. Parathyroid hormone (PTH), an anabolic treatment for post-menopausal osteoporosis, could benefit DMD patients by improving skeletal properties and reducing fracture risk. Other PTH analogues are not currently FDA approved to treat osteoporosis, but may have improved osteogenic effects compared to the human analogue. Black bear PTH is especially promising as an osteoporosis treatment for the DMD population. Black bears are unique models of bone maintenance during disuse, since during six months of inactivity (hibernation), they maintain skeletal properties, unlike other hibernators. Additionally, black bear PTH has been correlated to bone formation markers during hibernation, indicating it may be, at least in part, the mechanism by which bears maintain bone during disuse. Employing black bear PTH as a treatment for osteoporosis in DMD patients could greatly improve quality of life for these individuals, and reduce the pain and expense associated with frequent fractures.