4 resultados para maximum loading point
em Digital Commons - Michigan Tech
Resumo:
Polymers are typically electrically and thermally insulating materials. The electrical and thermal conductivities of polymers can be increased by the addition conductive fillers such as carbons. Once the polymer composites have been made electrically and thermally conductive, they can be used in applications where these conductivities are desired such as electromagnetic shielding and static dissipation. In this project, three carbon nanomaterials are added to polycarbonate to enhance the electrical and thermal conductivity of the resulting composite. Hyperion Catalysis FIBRILs carbon nanotubes were added to a maximum loading of 8 wt%. Ketjenblack EC-600 JD carbon black was added to a maximum loading of 10 wt%. XG Sciences xGnP™ graphene nanoplatelets were added to a maximum loading of 15 wt%. These three materials have drastically different morphologies and will have varying effects on the various properties of polycarbonate composites. It was determined that carbon nanotubes have the largest effect on electrical conductivity with an 8 wt% carbon nanotube in polycarbonate composite having an electrical conductivity of 0.128 S/cm (from a pure polycarbonate value of 10-17 S/cm). Carbon black has the next largest effect with an 8 wt% carbon black in polycarbonate composite having an electrical conductivity of 0.008 S/cm. Graphene nanoplatelets have the least effect with an 8 wt% graphene nanoplatelet in polycarbonate having an electrical conductivity of 2.53 x 10-8 S/cm. Graphene nanoplatelets show a significantly higher effect on increasing thermal conductivity than either carbon nanotubes or carbon black. Mechanically, all three materials have similar effects with graphene nanoplatelets being somewhat more effective at increasing the tensile modulus of the composite than the other fillers. Carbon black and graphene nanoplatelets show standard carbon-filler rheology where the addition of filler increases the viscosity of the resulting composite. Carbon nanotubes, on the other hand, show an unexpected rheology. As carbon nanotubes are added to polycarbonate the viscosity of the composite is reduced below that of the original polycarbonate. It was seen that the addition of carbon nanotubes offsets the increased viscosity from a second filler, such as carbon black or graphene nanoplatelets.
Resumo:
Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power system is presented. Based on the Matlab environment, the simulation is built by using Simulink and SimPowerSystem. There are four parts in a household solar system, solar cell, MPPT system, battery and power consumer. Solar cell and MPPT system are been studied and analyzed individually. The system with MPPT generates 30% more energy than the system without MPPT. After simulating the household system, it is can be seen that the power which generated by the system is 40.392 kWh per sunny day. By combining the power generated by the system and the price of the electric power, 8.42 years are need for the system to achieve a balance of income and expenditure when weather condition is considered.
Resumo:
This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.
Resumo:
The need for a stronger and more durable building material is becoming more important as the structural engineering field expands and challenges the behavioral limits of current materials. One of the demands for stronger material is rooted in the effects that dynamic loading has on a structure. High strain rates on the order of 101 s-1 to 103 s-1, though a small part of the overall types of loading that occur anywhere between 10-8 s-1 to 104 s-1 and at any point in a structures life, have very important effects when considering dynamic loading on a structure. High strain rates such as these can cause the material and structure to behave differently than at slower strain rates, which necessitates the need for the testing of materials under such loading to understand its behavior. Ultra high performance concrete (UHPC), a relatively new material in the U.S. construction industry, exhibits many enhanced strength and durability properties compared to the standard normal strength concrete. However, the use of this material for high strain rate applications requires an understanding of UHPC’s dynamic properties under corresponding loads. One such dynamic property is the increase in compressive strength under high strain rate load conditions, quantified as the dynamic increase factor (DIF). This factor allows a designer to relate the dynamic compressive strength back to the static compressive strength, which generally is a well-established property. Previous research establishes the relationships for the concept of DIF in design. The generally accepted methodology for obtaining high strain rates to study the enhanced behavior of compressive material strength is the split Hopkinson pressure bar (SHPB). In this research, 83 Cor-Tuf UHPC specimens were tested in dynamic compression using a SHPB at Michigan Technological University. The specimens were separated into two categories: ambient cured and thermally treated, with aspect ratios of 0.5:1, 1:1, and 2:1 within each category. There was statistically no significant difference in mean DIF for the aspect ratios and cure regimes that were considered in this study. DIF’s ranged from 1.85 to 2.09. Failure modes were observed to be mostly Type 2, Type 4, or combinations thereof for all specimen aspect ratios when classified according to ASTM C39 fracture pattern guidelines. The Comite Euro-International du Beton (CEB) model for DIF versus strain rate does not accurately predict the DIF for UHPC data gathered in this study. Additionally, a measurement system analysis was conducted to observe variance within the measurement system and a general linear model analysis was performed to examine the interaction and main effects that aspect ratio, cannon pressure, and cure method have on the maximum dynamic stress.