2 resultados para management control

em Digital Commons - Michigan Tech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Invasive plant species threaten natural areas by reducing biodiversity and altering ecosystem functions. They also impact agriculture by reducing crop and livestock productivity. Millions of dollars are spent on invasive species control each year, and traditionally, herbicides are used to manage invasive species. Herbicides have human and environmental health risks associated with them; therefore, it is essential that land managers and stakeholders attempt to reduce these risks by utilizing the principles of integrated weed management. Integrated weed management is a practice that incorporates a variety of measures and focuses on the ecology of the invasive plant to manage it. Roadways are high risk areas that have high incidence of invasive species. Roadways act as conduits for invasive species spread and are ideal harborages for population growth; therefore, roadways should be a primary target for invasive species control. There are four stages in the invasion process which an invasive species must overcome: transport, establishment, spread, and impact. The aim of this dissertation was to focus on these four stages and examine the mechanisms underlying the progression from one stage to the next, while also developing integrated weed management strategies. The target species were Phragmites australis, common reed, and Cisrium arvense, Canada thistle. The transport and establishment risks of P. australis can be reduced by removing rhizome fragments from soil when roadside maintenance is performed. The establishment and spread of C. arvense can be reduced by planting particular resistant species, e.g. Heterotheca villosa, especially those that can reduce light transmittance to the soil. Finally, the spread and impact of C. arvense can be mitigated on roadsides through the use of the herbicide aminopyralid. The risks associated with herbicide drift produced by application equipment can be reduced by using the Wet-Blade herbicide application system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis studies the minimization of the fuel consumption for a Hybrid Electric Vehicle (HEV) using Model Predictive Control (MPC). The presented MPC – based controller calculates an optimal sequence of control inputs to a hybrid vehicle using the measured plant outputs, the current dynamic states, a system model, system constraints, and an optimization cost function. The MPC controller is developed using Matlab MPC control toolbox. To evaluate the performance of the presented controller, a power-split hybrid vehicle, 2004 Toyota Prius, is selected. The vehicle uses a planetary gear set to combine three power components, an engine, a motor, and a generator, and transfer energy from these components to the vehicle wheels. The planetary gear model is developed based on the Willis’s formula. The dynamic models of the engine, the motor, and the generator, are derived based on their dynamics at the planetary gear. The MPC controller for HEV energy management is validated in the MATLAB/Simulink environment. Both the step response performance (a 0 – 60 mph step input) and the driving cycle tracking performance are evaluated. Two standard driving cycles, Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule (HWFET), are used in the evaluation tests. For the UDDS and HWFET driving cycles, the simulation results, the fuel consumption and the battery state of charge, using the MPC controller are compared with the simulation results using the original vehicle model in Autonomie. The MPC approach shows the feasibility to improve vehicle performance and minimize fuel consumption.