5 resultados para long night treatment

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased demand for forest-derived biomass has resulted in changes in harvest intensities in Finland. Conventional stem-only harvest (CH) has to some extent been replaced with whole-tree harvest (WTH). The latter involves a greater removal of nutrients from the forest ecosystem, as all the above ground biomass is exported from the site. This has raised concerns that WTH could result in large changes in the nutrient dynamics of a forest stand and could eventually lower its site productivity. Little empirical data exists to support this assumption as only a limited number of studies have been conducted on the topic. A majority of these discuss the short-term effects, thus the long-term consequences remain unknown. The objective of this study was to compare differences in soil properties after CH and WTH in a fertile Norway spruce (Picea abies (L) Karst.) stand in Southern Finland. The site was clear-felled in August 2000 and spruce seedlings were planted in the following summer. Soil sampling in the form of systematic randomized sampling was carried out in May 2011. Changes in base saturation, cation exchange capacity, elemental pools (total and exchangeable) and acidity were studied in both organic and mineral horizons. The results indicate that WTH lowered effective cation exchange capacity and base saturation particularly in the humus layer. The pools of exchangeable Al and Fe were increased in the humus layer, whereas the amount of exchangeable Ca decreased in both layers. WTH also resulted in lower Ca/Al-ratios across the sampled layers. Treatment did not have a significant effect on pH, total pools of elements or on the C/N-ratio of the soil. The results suggest that although the stand possesses significant pools of nutrients at present, WTH, if continued, could have long-term effects on site productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Northern peatlands are large reservoirs of soil organic carbon (C). Historically peatlands have served as a sink for C since decomposition is slowed primarily because of a raised water table (WT) that creates anoxic conditions. Climate models are predicting dramatic changes in temperature and precipitation patterns for the northern hemisphere that contain more than 90% of the world’s peatlands. It is uncertain whether climate change will shift northern peatlands from C sequestering systems to a major global C source within the next century because of alterations to peatland hydrology. This research investigated the effects of 80 years of hydrological manipulations on peatland C cycling in a poor fen peatland in northern Michigan. The construction of an earthen levee within the Seney National Wildlife Refuge in the 1930’s resulted in areas of raised and lowered WT position relative to an intermediate WT site that was unaltered by the levee. We established sites across the gradient of long-term WT manipulations to examine how decadal changes in WT position alter peatland C cycling. We quantified vegetation dynamics, peat substrate quality, and pore water chemistry in relation to trace gas C cycling in these manipulated areas as well as the intermediate site. Vegetation in both the raised and lowered WT treatments has different community structure, biomass, and productivity dynamics compared to the intermediate site. Peat substrate quality exhibited differences in chemical composition and lability across the WT treatments. Pore water dissolved organic carbon (DOC) concentrations increased with impoundment and WT drawdown. The raised WT treatment DOC has a low aromaticity and is a highly labile C source, whereas WT drawdown has increased DOC aromaticity. This study has demonstrated a subtle change of the long-term WT position in a northern peatland will induce a significant influence on ecosystem C cycling with implications for the fate of peatland C stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a progressive disease affecting skeletal and cardiac muscle, as well as bone. Long term disuse and glucocorticoid treatments cause progressive osteoporosis in DMD patients, leading to an increase in fracture incidence. Treatments for osteoporosis in these patients have not been widely explored. Parathyroid hormone (PTH), an anabolic treatment for post-menopausal osteoporosis, could benefit DMD patients by improving skeletal properties and reducing fracture risk. Other PTH analogues are not currently FDA approved to treat osteoporosis, but may have improved osteogenic effects compared to the human analogue. Black bear PTH is especially promising as an osteoporosis treatment for the DMD population. Black bears are unique models of bone maintenance during disuse, since during six months of inactivity (hibernation), they maintain skeletal properties, unlike other hibernators. Additionally, black bear PTH has been correlated to bone formation markers during hibernation, indicating it may be, at least in part, the mechanism by which bears maintain bone during disuse. Employing black bear PTH as a treatment for osteoporosis in DMD patients could greatly improve quality of life for these individuals, and reduce the pain and expense associated with frequent fractures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly 22 million Americans operate as shift workers, and shift work has been linked to the development of cardiovascular disease (CVD). This study is aimed at identifying pivotal risk factors of CVD by assessing 24 hour ambulatory blood pressure, state anxiety levels and sleep patterns in 12 hour fixed shift workers. We hypothesized that night shift work would negatively affect blood pressure regulation, anxiety levels and sleep patterns. A total of 28 subjects (ages 22-60) were divided into two groups: 12 hour fixed night shift workers (n=15) and 12 hour fixed day shift workers (n=13). 24 hour ambulatory blood pressure measurements (Space Labs 90207) were taken twice: once during a regular work day and once on a non-work day. State anxiety levels were assessed on both test days using the Speilberger’s State Trait Anxiety Inventory. Total sleep time (TST) was determined using self recorded sleep diary. Night shift workers demonstrated increases in 24 hour systolic (122 ± 2 to 126 ± 2 mmHg, P=0.012); diastolic (75 ± 1 to 79 ± 2 mmHg, P=0.001); and mean arterial pressures (90 ± 2 to 94 ± 2mmHg, P<0.001) during work days compared to off days. In contrast, 24 hour blood pressures were similar during work and off days in day shift workers. Night shift workers reported less TST on work days versus off days (345 ± 16 vs. 552 ± 30 min; P<0.001), whereas day shift workers reported similar TST during work and off days (475 ± 16 minutes to 437 ± 20 minutes; P=0.231). State anxiety scores did not differ between the groups or testing days (time*group interaction P=0.248), suggesting increased 24 hour blood pressure during night shift work is related to decreased TST, not short term anxiety. Our findings suggest that fixed night shift work causes disruption of the normal sleep-wake cycle negatively affecting acute blood pressure regulation, which may increase the long-term risk for CVD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The loss of prestressing force over time influences the long-term deflection of the prestressed concrete element. Prestress losses are inherently complex due to the interaction of concrete creep, concrete shrinkage, and steel relaxation. Implementing advanced materials such as ultra-high performance concrete (UHPC) further complicates the estimation of prestress losses because of the changes in material models dependent on curing regime. Past research shows compressive creep is "locked in" when UHPC cylinders are subjected to thermal treatment before being loaded in compression. However, the current precasting manufacturing process would typically load the element (through prestressing strand release from the prestressing bed) before the element would be taken to the curing facility. Members of many ages are stored until curing could be applied to all of them at once. This research was conducted to determine the impact of variable curing times for UHPC on the prestress losses, and hence deflections. Three UHPC beams, a rectangular section, a modified bulb tee section, and a pi-girder, were assessed for losses and deflections using an incremental time step approach and material models specific to UHPC based on compressive creep and shrinkage testing. Results show that although it is important for prestressed UHPC beams to be thermally treated, to "lock in" material properties, the timing of thermal treatment leads to negligible differences in long-term deflections. Results also show that for UHPC elements that are thermally treated, changes in deflection are caused only by external loads because prestress losses are "locked-in" following thermal treatment.