2 resultados para linear programming applications

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small-scale farmers in the Chipata District of Zambia rely on their farm fields to grow maize and groundnuts for food security. Cotton production and surplus food security crops are used to generate income to provide for their families. With increasing population pressure, available land has decreased and farmers struggle to provide the necessary food requirements and income to meet their family’s needs. The purpose of the study was to determine how a farmer can best allocate his land to produce maize, groundnuts and cotton when constrained by labor and capital resources to generate the highest potential for food security and financial gains. Data from the 2008-2009 growing season was compiled and analyzed using a linear programming model. The study determined that farmers make the most profit by allocating all additional land and resources to cotton after meeting their minimum food security requirements. The study suggests growing cotton is a beneficial practice for small-scale subsistence farmers to generate income when restricted by limited resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of photonic crystal technology on metal-oxide film is a very promising field for future optical telecommunication systems. Band gap and polarization effects in lithium niobate (LiNbO3) photonic crystals and bismuth-substituted iron garnets (BiYIG) photonic crystals are investigated in this work reported here. The design and fabrication process are similar for these two materials while the applications are different, involving Bragg filtering in lithium niobate and polarization rotation in nonreciprocal iron garnets. The research of photonic structures in LiNbO3 is of high interest for integrated device application due to its remarkable electro-optical characteristics. This work investigated the photonic band gap in high quality LiNbO3 single crystalline thin film by ion implantation to realize high efficiency narrow bandwidth filters. LiNbO3 thin film detachment by bonding is also demonstrated for optical device integration. One-dimensional Bragg BiYIG waveguides in gyrotropic system are found to have multiple stopbands and evince enhancement of polarization rotation efficiency. Previous photon trapping theory cannot explain the phenomena because of the presence of linear birefringence. This work is aimed at investigating the mechanism with the support of experiments. The results we obtained show that selective suppression of Bloch states in gyrotropic bandgaps is the key mechanism for the observed phenomena. Finally, the research of ferroelectric single crystal PMN-PT with ultra high piezoelectric coefficient as a biosensor is also reported. This work presents an investigation and results on higher sensitivity effects than conventional materials such as quartz and lithium niobate.