2 resultados para limit sets

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pacaya volcanic complex is part of the Central American volcanic arc, which is associated with the subduction of the Cocos tectonic plate under the Caribbean plate. Located 30 km south of Guatemala City, Pacaya is situated on the southern rim of the Amatitlan Caldera. It is the largest post-caldera volcano, and has been one of Central America’s most active volcanoes over the last 500 years. Between 400 and 2000 years B.P, the Pacaya volcano had experienced a huge collapse, which resulted in the formation of horseshoe-shaped scarp that is still visible. In the recent years, several smaller collapses have been associated with the activity of the volcano (in 1961 and 2010) affecting its northwestern flanks, which are likely to be induced by the local and regional stress changes. The similar orientation of dry and volcanic fissures and the distribution of new vents would likely explain the reactivation of the pre-existing stress configuration responsible for the old-collapse. This paper presents the first stability analysis of the Pacaya volcanic flank. The inputs for the geological and geotechnical models were defined based on the stratigraphical, lithological, structural data, and material properties obtained from field survey and lab tests. According to the mechanical characteristics, three lithotechnical units were defined: Lava, Lava-Breccia and Breccia-Lava. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, and strength and deformation characteristics were computed in a specified stress range. Further, the stability of the volcano was evaluated by two-dimensional analysis performed by Limit Equilibrium (LEM, ROCSCIENCE) and Finite Element Method (FEM, PHASE 2 7.0). The stability analysis mainly focused on the modern Pacaya volcano built inside the collapse amphitheatre of “Old Pacaya”. The volcanic instability was assessed based on the variability of safety factor using deterministic, sensitivity, and probabilistic analysis considering the gravitational instability and the effects of external forces such as magma pressure and seismicity as potential triggering mechanisms of lateral collapse. The preliminary results from the analysis provide two insights: first, the least stable sector is on the south-western flank of the volcano; second, the lowest safety factor value suggests that the edifice is stable under gravity alone, and the external triggering mechanism can represent a likely destabilizing factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen and water are essential for plant growth and development. In this study, we designed experiments to produce gene expression data of poplar roots under nitrogen starvation and water deprivation conditions. We found low concentration of nitrogen led first to increased root elongation followed by lateral root proliferation and eventually increased root biomass. To identify genes regulating root growth and development under nitrogen starvation and water deprivation, we designed a series of data analysis procedures, through which, we have successfully identified biologically important genes. Differentially Expressed Genes (DEGs) analysis identified the genes that are differentially expressed under nitrogen starvation or drought. Protein domain enrichment analysis identified enriched themes (in same domains) that are highly interactive during the treatment. Gene Ontology (GO) enrichment analysis allowed us to identify biological process changed during nitrogen starvation. Based on the above analyses, we examined the local Gene Regulatory Network (GRN) and identified a number of transcription factors. After testing, one of them is a high hierarchically ranked transcription factor that affects root growth under nitrogen starvation. It is very tedious and time-consuming to analyze gene expression data. To avoid doing analysis manually, we attempt to automate a computational pipeline that now can be used for identification of DEGs and protein domain analysis in a single run. It is implemented in scripts of Perl and R.