2 resultados para length-weight relationship
em Digital Commons - Michigan Tech
Resumo:
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.
Resumo:
Individual life history theory is largely focused on understanding the extent to which various phenotypes of an organism are adaptive and whether they represent life history trade-offs. Compensatory growth (CG) is increasingly appreciated as a phenotype of interest to evolutionary ecologists. CG or catch-up growth involves the ability of an organism to grow at a faster-than-normal rate following periods of under-nutrition once conditions subsequently improve. Here, I examine CG in a population of moose (Alces alces) living on Isle Royale, a remote island in Lake Superior, North America. I gained insights about CG from measurements of skeletal remains of 841 moose born throughout a 52-year period. In particular, I compared the length of the metatarsal bone (ML) with several skull measurements. While ML is an index of growth while the moose is in utero and during the first year or two of life, a moose skull continues to grow until a moose is approximately 5 years of age. Because of these differences, the strength of correlation between ML and skull measurements, for a group of moose (say female moose) is an indication of that group’s capacity for CG. Using this logic, I conducted analyses whose results suggest that the capacity for CG did not differ between sexes, between individuals born during periods of high and low population densities, or between individuals exhibiting signs of senescence and those that do not. The analysis did however suggest that long-lived individuals had a greater capacity for CG than short-lived individuals. These results suggest that CG in moose is an adaptive trait and might not be associated with life history trade-offs.