6 resultados para least limiting water range

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundwater pumping from aquifers in hydraulic connection with nearby streams is known to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes--St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin is shown to be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time and streamflow depletion limits as well as streambed conductance. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peru is a developing country with abundant fresh water resources, yet the lack of infrastructure leaves much of the population without access to safe water for domestic uses. The author of this report was a Peace Corps Volunteer in the sector of water & sanitation in the district of Independencia, Ica, Peru. Independencia is located in the arid coastal region of the country, receiving on average 15 mm of rain annually. The water source for this district comes from the Pisco River, originating in the Andean highlands and outflowing into the Pacific Ocean near the town of Pisco, Peru. The objectives of this report are to assess the water supply and sanitation practices, model the existing water distribution system, and make recommendations for future expansion of the distribution system in the district of Independencia, Peru. The assessment of water supply will be based on the results from community surveys done in the district of Independencia, water quality testing done by a detachment of the U.S. Navy, as well as on the results of a hydraulic model built in EPANET 2.0 to represent the distribution system. Sanitation practice assessments will be based on the surveys as well as observations from the author while living in Peru. Recommendations for system expansions will be made based on results from the EPANET model and the municipality’s technical report for the existing distribution system. Household water use and sanitation surveys were conducted with 84 families in the district revealing that upwards of 85% store their domestic water in regularly washed containers with lids. Over 80% of those surveyed are drinking water that is treated, mostly boiled. Of those surveyed, over 95% reported washing their hands and over 60% mentioned at least one critical time for hand washing when asked for specific instances. From the surveys, it was also discovered that over 80% of houses are properly disposing of excrement, in either latrines or septic tanks. There were 43 families interviewed with children five years of age or under, and just over 18% reported the child had a case of diarrhea within the last month at the time of the interview. Finally, from the surveys it was calculated that the average water use per person per day is about 22 liters. Water quality testing carried out by a detachment of the U.S. Navy revealed that the water intended for consumption in the houses surveyed was not suitable for consumption, with a median E. coli most probable number of 47/100 ml for the 61 houses sampled. The median total coliforms was 3,000 colony forming units per 100 ml. EPANET was used to simulate the water delivery system and evaluate its performance. EPANET is designed for continuous water delivery systems, assuming all pipes are always flowing full. To account for the intermittent nature of the system, multiple EPANET network models were created to simulate how water is routed to the different parts of the system throughout the day. The models were created from interviews with the water technicians and a map of the system created using handheld GPS units. The purpose is to analyze the performance of the water system that services approximately 13,276 people in the district of Independencia, Peru, as well as provide recommendations for future growth and improvement of the service level. Performance evaluation of the existing system is based on meeting 25 liters per person per day while maintaining positive pressure at all nodes in the network. The future performance is based on meeting a minimum pressure of 20 psi in the main line, as proposed by Chase (2000). The EPANET model results yield an average nodal pressure for all communities of 71 psi, with a range from 1.3 – 160 psi. Thus, if the current water delivery schedule obtained from the local municipality is followed, all communities should have sufficient pressure to deliver 25 l/p/d, with the exception of Los Rosales, which can only supply 3.25 l/p/d. However, if the line to Los Rosales were increased from one to four inches, the system could supply this community with 25 l/p/d. The district of Independencia could greatly benefit from increasing the service level to 24-hour water delivery and a minimum of 50 l/p/d, so that communities without reliable access due to insufficient pressure would become equal beneficiaries of this invaluable resource. To evaluate the feasibility of this, EPANET was used to model the system with a range of population growth rates, system lifetimes, and demands. In order to meet a minimum pressure of 20 psi in the main line, the 6-inch diameter main line must be increased and approximately two miles of trench must be excavated up to 30 feet deep. The sections of the main line that must be excavated are mile 0-1 and 1.5-2.5, and the first 3.4 miles of the main line must be increased from 6 to 16 inches, contracting to 10 inches for the remaining 5.8 miles. Doing this would allow 24-hour water delivery and provide 50 l/p/d for a range of population growth rates and system lifetimes. It is expected that improving the water delivery service would reduce the morbidity and mortality from diarrheal diseases by decreasing the recontamination of the water due to transport and household storage, as well as by maintaining continuous pressure in the system to prevent infiltration of contaminated groundwater. However, this expansion must be carefully planned so as not to affect aquatic ecosystems or other districts utilizing water from the Pisco River. It is recommended that stream gaging of the Pisco River and precipitation monitoring of the surrounding watershed is initiated in order to begin a hydrological study that would be integrated into the district’s water resource planning. It is also recommended that the district begin routine water quality testing, with the results available to the public.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of climate change are expected to be very severe in arid regions. The Sonora River Basin, in the northwestern state of Sonora, Mexico, is likely to be severely affected. Some of the anticipated effects include precipitation variability, intense storm events, higher overall temperatures, and less available water. In addition, population in Sonora, specifically the capital city of Hermosillo, is increasing at a 1.5% rate and current populations are near 700,000. With the reduction in water availability and an increase in population, Sonora, Mexico is expected to experience severe water resource issues in the near future. In anticipation of these changes, research is being conducted in an attempt to improve water management in the Sonora River Basin, located in the northwestern part of Sonora. This research involves participatory modeling techniques designed to increase water manager awareness of hydrological models and their use as integrative tools for water resource management. This study was conducted as preliminary research for the participatory modeling grant in order to gather useful information on the population being studied. This thesis presents research from thirty-four in-depth interviews with water managers, citizens, and agricultural producers in Sonora, Mexico. Data was collected on perceptions of water quantity and quality in the basin, thoughts on current water management practices, perceptions of climate change and its management, experience with, knowledge of, and trust in hydrological models as water management tools. Results showed that the majority of interviewees thought there was not enough water to satisfy their daily needs. Most respondents also agreed that the water available was of good quality, but that current management of water resources was ineffective. Nearly all interviewees were aware of climate change and thought it to be anthropogenic. May reported experiencing higher temperatures, precipitation changes, and higher water scarcity and attributed those fluctuations to climate change. 65% of interviewees were at least somewhat familiar with hydrological models, though only 28% had ever used them or their output. Even with model usage results being low, 100% of respondents believed hydrological models to be very useful water management tools. Understanding how water, climate change, and hydrological models are perceived by this population of people is essential to improving their water management practices in the face of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric aerosol water-soluble organic compounds (WSOC) exist in a complex mixture of thousands of organic compounds which may have a significant influence on the climate-relevant properties of the atmospheric aerosol. To understand the potential influences, the ambient aerosol was collected at a nonurban mountainous site near Steamboat Springs, CO. The WSOC fraction was analyzed using positive and negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 2400 and 4000 molecular formulas were identified from the detected positive and negative ions, respectively. The formulas contained carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) atoms over the mass range of 100-800 Da in both ionization modes. The number range of double bond equivalents (DBE), the mean O:C, H:C, and oxidation state of carbon for the positive ions were 0 – 18, 0.25 ± 0.15, 1.39 ± 0.29, and -0.89 ± 0.23, respectively. Comparatively, the negative ion values were 0 – 14, 0.53 ± 0.20, 1.48 ± 0.30, and -0.41 ± 0.45, respectively. Overall, the positive ion molecular formulas were less oxygenated than negative ions as seen with the lower O:C and OSc values. Molecular formulas of the positive ions classified as aliphatic, olefinic, and aromatic compound classes based on the aromaticity index values. Aliphatic compounds were the CHNO and CHO formulas that had mean DBE values of about 5 and 3, respectively. However, a majority of the CHOS, CHNOS, and CHS formulas were defined as olefinic compounds and had mean DBE values of about 12, 13, and 10, respectively. Overall, more than half of the assigned molecular formulas contained sulfur and were olefinic to aromatic compounds with a DBE range of 7-18. Source of the unsaturated sulfur containing compounds is currently unknown. Several nitrogen containing compounds were in common with the field and laboratory studies of the biomass burning aerosol and aged secondary organic aerosol products of the limonene ozonolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable "pH paper".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than eighteen percent of the world’s population lives without reliable access to clean water, forced to walk long distances to get small amounts of contaminated surface water. Carrying heavy loads of water long distances and ingesting contaminated water can lead to long-term health problems and even death. These problems affect the most vulnerable populations, women, children, and the elderly, more than anyone else. Water access is one of the most pressing issues in development today. Boajibu, a small village in Sierra Leone, where the author served in Peace Corps for two years, lacks access to clean water. Construction of a water distribution system was halted when a civil war broke out in 1992 and has not been continued since. The community currently relies on hand-dug and borehole wells that can become dirty during the dry season, which forces people to drink contaminated water or to travel a far distance to collect clean water. This report is intended to provide a design the system as it was meant to be built. The water system design was completed based on the taps present, interviews with local community leaders, local surveying, and points taken with a GPS. The design is a gravity-fed branched water system, supplied by a natural spring on a hill adjacent to Boajibu. The system’s source is a natural spring on a hill above Boajibu, but the flow rate of the spring is unknown. There has to be enough flow from the spring over a 24-hour period to meet the demands of the users on a daily basis, or what is called providing continuous flow. If the spring has less than this amount of flow, the system must provide intermittent flow, flow that is restricted to a few hours a day. A minimum flow rate of 2.1 liters per second was found to be necessary to provide continuous flow to the users of Boajibu. If this flow is not met, intermittent flow can be provided to the users. In order to aid the construction of a distribution system in the absence of someone with formal engineering training, a table was created detailing water storage tank sizing based on possible source flow rates. A builder can interpolate using the source flow rate found to get the tank size from the table. However, any flow rate below 2.1 liters per second cannot be used in the table. In this case, the builder should size the tank such that it can take in the water that will be supplied overnight, as all the water will be drained during the day because the users will demand more than the spring can supply through the night. In the developing world, there is often a problem collecting enough money to fund large infrastructure projects, such as a water distribution system. Often there is only enough money to add only one or two loops to a water distribution system. It is helpful to know where these one or two loops can be most effectively placed in the system. Various possible loops were designated for the Boajibu water distribution system and the Adaptive Greedy Heuristic Loop Addition Selection Algorithm (AGHLASA) was used to rank the effectiveness of the possible loops to construct. Loop 1 which was furthest upstream was selected because it benefitted the most people for the least cost. While loops which were further downstream were found to be less effective because they would benefit fewer people. Further studies should be conducted on the water use habits of the people of Boajibu to more accurately predict the demands that will be placed on the system. Further population surveying should also be conducted to predict population change over time so that the appropriate capacity can be built into the system to accommodate future growth. The flow at the spring should be measured using a V-notch weir and the system adjusted accordingly. Future studies can be completed adjusting the loop ranking method so that two users who may be using the water system for different lengths of time are not counted the same and vulnerable users are weighted more heavily than more robust users.