2 resultados para law office management
em Digital Commons - Michigan Tech
Resumo:
The purpose of this research is to examine the role of the mining company office in the management of the copper industry in Michigan’s Keweenaw Peninsula between 1901 and 1946. Two of the largest and most influential companies were examined – the Calumet & Hecla Mining Company and the Quincy Mining Company. Both companies operated for more than forty years under general managers who were arguably the most influential people in the management of each company. James MacNaughton, general manager at Calumet and Hecla, worked from 1901 through 1941; Charles Lawton, general manager at Quincy Mining Company, worked from 1905 through 1946. In this case, both of these managers were college-educated engineers and adopted scientific management techniques to operate their respective companies. This research focused on two main goals. The first goal of this project was to address the managerial changes in Michigan’s copper mining offices of the early twentieth century. This included the work of MacNaughton and Lawton, along with analysis of the office structures themselves and what changes occurred through time. The second goal of the project was to create a prototype virtual exhibit for use at the Quincy Mining Company office. A virtual exhibit will allow visitors the opportunity to visit the office virtually, experiencing the office as an office worker would have in the early twentieth century. To meet both goals, this project used various research materials, including archival sources, oral histories, and material culture to recreate the history of mining company management in the Copper Country.
Resumo:
In 2005, Wetland Studies and Solutions, Inc. (WSSI) installed an extensive Low Impact Development (LID) stormwater management system on their new office site in Gainesville, Virginia. The 4-acre site is serviced by a network of LID components: permeable pavements (two proprietary and one gravel type), bioretention cell / rain garden, green roof, vegetated swale, rainwater harvesting and drip irrigation, and slow-release underground detention. The site consists of heavy clay soils, and the LID components are mostly integrated by a series of underdrain pipes. A comprehensive monitoring system has been designed and installed to measure hydrologic performance throughout the LID, underdrained network. The monitoring system measures flows into and out of each LID component independently while concurrently monitoring rainfall events. A sensitivity analysis and laboratory calibration has been performed on the flow measurement system. Field data has been evaluated to determine the hydrologic performance of the LID features. Finally, hydrologic models amenable to compact, underdrained LID sites have been reviewed and recommended for future modeling and design.