9 resultados para large volume samples

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap since Grünberg and his group established that the interlayer exchange coupling (IEC) is a function of the non-magnetic spacer width. This interest was further fuelled by the discovery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert Fert and Peter Grünberg were awarded the Nobel Prize in Physics for their contribution to the discovery of GMR. GMR is the key property that is being used in the read-head of the present day computer hard drive as it requires a high sensitivity in the detection of magnetic field. The recent increase in demand for device miniaturization encouraged researchers to look for GMR in nanoscale multilayered structures. In this context, one dimensional(1-D) multilayerd nanowire structure has shown tremendous promise as a viable candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresistance(GMR) effect, which is the novel feature of the currently used multilayered thin film, has already been observed in multilayered nanowire systems at ambient temperature. Geometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the 1-D multilayered nanowire prohibits the minimization of magnetic interaction- offering a rich variety of magnetic properties in nanowire that can be exploited for novel functionality. In addition, introduction of non-magnetic spacer between the magnetic layers presents additional advantage in controlling magnetic properties via tuning the interlayer magnetic interaction. Despite of a large volume of theoretical works devoted towards the understanding of GMR and IEC in super lattice structures, limited theoretical calculations are reported in 1-D multilayered systems. Thus to gauge their potential application in new generation magneto-electronic devices, in this thesis, I have discussed the usage of first principles density functional theory (DFT) in predicting the equilibrium structure, stability as well as electronic and magnetic properties of one dimensional multilayered nanowires. Particularly, I have focused on the electronic and magnetic properties of Fe/Pt multilayered nanowire structures and the role of non-magnetic Pt spacer in modulating the magnetic properties of the wire. It is found that the average magnetic moment per atom in the nanowire increases monotonically with an ~1/(N(Fe)) dependance, where N(Fe) is the number of iron layers in the nanowire. A simple model based upon the interfacial structure is given to explain the 1/(N(Fe)) trend in magnetic moment obtained from the first principle calculations. A new mechanism, based upon spin flip with in the layer and multistep electron transfer between the layers, is proposed to elucidate the enhancement of magnetic moment of Iron atom at the Platinum interface. The calculated IEC in the Fe/Pt multilayered nanowire is found to switch sign as the width of the non-magnetic spacer varies. The competition among short and long range direct exchange and the super exchange has been found to play a key role for the non-monotonous sign in IEC depending upon the width of the Platinum spacer layer. The calculated magnetoresistance from Julliere's model also exhibit similar switching behavior as that of IEC. The universality of the behavior of exchange coupling has also been looked into by introducing different non-magnetic spacers like Palladium, Copper, Silver, and Gold in between magnetic Iron layers. The nature of hybridization between Fe and other non-magnetic spacer is found to dictate the inter layer magnetic interaction. For example, in Fe/Pd nanowire the d-p hybridization in two spacer layer case favors anti-ferromagnetic (AFM) configuration over ferromagnetic (FM) configuration. However, the hybridization between half-filled Fe(d) and filled Cu(p) state in Fe/Cu nanowire favors FM coupling in the 2-spacer system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy crisis and worldwide environmental problem make hydrogen a prospective energy carrier. However, storage and transportation of hydrogen in large quantities at small volume is currently not practical. Lots of materials and devices have been developed for storage hydrogen, but to today none is able to meet the DOE targets. Activated carbon has been found to be a good hydrogen adsorbent due to its high surface area. However, the weak van der Waals force between hydrogen and the adsorbent has limited the adsorption capacity. Previous studies have found that enhanced adsorption can be obtained with applied electric field. Stronger interaction between the polarized hydrogen and the charged sorbents under high voltage is considered as the reason. This study was initiated to investigate if the adsorption can be further enhanced when the activated carbon particles are separated with a dielectric coating. Dielectric TiO2 nanoparticles were first utilized. Hydrogen adsorption measurements on the TiO2-coated carbon materials, with or without an external electric field, were made. The results showed that the adsorption capacity enhancement increased with the increasing amount of TiO2 nanoparticles with an applied electric field. Since the hydrogen adsorption capacity on TiO2 particles is very low and there is no hydrogen adsorption enhancement on TiO2 particles alone when electric field is applied, the effect of dielectric coating is demonstrated. Another set of experiments investigated the behavior of hydrogen adsorption over TiO2-coated activated carbon under various electric potentials. The results revealed that the hydrogen adsorption first increased and then decreased with the increase of electric field. The improved storage was due to a stronger interaction between charged carbon surface and polarized hydrogen molecule caused by field induced polarization of TiO2 coating. When the electric field was sufficient to cause considerable ionization of hydrogen, the decrease of hydrogen adsorption occurred. The current leak detected at 3000 V was a sign of ionization of hydrogen. Experiments were also carried out to examine the hydrogen adsorption performances over activated carbon separated by other dielectric materials, MgO, ZnO and BaTiO3, respectively. For the samples partitioned with MgO and ZnO, the measurements with and without an electric field indicated negligible differences. Electric field enhanced adsorption has been observed on the activated carbon separated with BaTiO3, a material with unusually high dielectric constant. Corresponding computational calculations using Density Functional Theory have been performed on hydrogen interaction with charged TiO2 molecule as well as TiO2 molecule, coronene and TiO2-doped coronene in the presence of an electric field. The simulated results were consistent with the observations from experiments, further confirming the proposed hypotheses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I assessed the influence of the Keweenaw Current and spring thermal bar on the distribution of larval fishes and large zooplankton in Lake Superior. In 1998 and 1999, samples were collected from inshore (0.2 – 3.0 km from shore) and offshore (5.0 – 9.0 km from shore) locations on three transects off the western coast of the Keweenaw Peninsula, Michigan. For larval fishes, density and size distribution patterns of lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsoni), and spoonhead sculpin (Cottus ricei) suggest a seasonal inshore to offshore movement. For zooplankton, seasonal warming appeared to be the major factor that limited planktonic catches of the primarily benthic Mysisrelicta and Diporeia spp., while simultaneously stimulated growth and reproduction of the cladocerans Daphnia spp., Holopedium gibberum, and Bythotrephes cederstroemi. In contrast, calanoid copepods as a group were abundant throughout the entire sampling season. The greatest abundances of zooplankton were generally encountered offshore, even for the cladocerans, which apparently expanded from inshore to offshore locations with seasonal warming. In 2000, sampling efforts focused on lake herring. Samples were collected from surface waters at 0.1 – 17.0 km from shore on two transects. Lake herring larvae were also reared in the laboratory from eggs in order to validate the use of otolith microstructure for aging. Increment deposition was not statistically different from a daily rate starting from 28 days after hatching, near the time of yolk-sac absorption, but larvae with lower growth rates could not be aged as accurately. In Lake Superior, lake herring tended to be slightly more abundant, larger, and older at inshore locations, but a dense patch of younger larvae was also encountered 7 – 13 km from shore. The distribution iiipatterns suggest that larvae were transported by prevailing currents into the study region, possibly from the more productive spawning regions in western Lake Superior. Growth rates were suppressed at offshore locations where temperatures were less than 8°C. These results indicate that lake herring larvae may be transported far distances from spawning concentrations by longshore currents, and water temperatures may largely control their growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kenya (a.k.a., Gregory) Rift is a geologically active area located within the eastern branch of the larger East African Rift System (EARS). The study area is located in the southern Kenya Rift between 1° South and the Kenya-Tanzania border (covering approximately 1.5 square degrees, semi-centered on Lake Magadi) and is predominantly filled with extrusive igneous rocks (mostly basalts, phonolites and trachytes) of Miocene age or younger. Sediments are thin, less than 1.5Ma, and are confined to small grabens. The EARS can serve both as an analogue for ancient continental rifting and as a modern laboratory to observe the geologic processes responsible for rifting. This study demonstrates that vintage (as in older, quality maps published by the Kenya Geological Survey, that may be outdated based on newer findings) quarter-degree maps can be successfully combined with recently published data, and used to interpret satellite (mainly Landsat 7) images to produce versatile, updated digital maps. The study area has been remapped using this procedure and although it covers a large area, the mapping retains a quadrangle level of detail. Additionally, all geologic mapping elements (formations, faults, etc.) have been correlated across older map boundaries so that geologic units don't end artificially at degree boundaries within the study area. These elements have also been saved as individual digital files to facilitate future analysis. A series of maps showing the evolution of the southern Kenya rift from the Miocene to the present was created by combining the updated geologic map with age dates for geologic formations and fault displacements. Over 200 age dates covering the entire length of the Kenya Rift have been compiled for this study, and 6 paleo-maps were constructed to demonstrate the evolution of the area, starting with the eruption of the Kishalduga and Lisudwa melanephelinites onto the metamorphic basement around 15Ma. These eruptions occurred before the initial rift faulting and were followed by a massive eruption of phonolites between 13-10 Ma that covered most of the Kenya dome. This was followed by a period of relative quiescence, until the initial faulting defined the western boundary of the rift around 7Ma. The resulting graben was asymmetrical until corresponding faults to the east developed around 3Ma. The rift valley was flooded by basalts and trachytes between 3Ma and 700ka, after which the volcanic activity slowed to a near halt. Since 700ka most of the deposition has been comprised of sediments, mainly from lakes occupying the various basins in the area. The main results of this study are, in addition to a detailed interpretation of the rift development, a new geologic map that correlates dozens of formations across old map boundaries and a compilation of over 300 age dates. Specific products include paleomaps, tables of fault timing and displacement, and volume estimates of volcanic formations. The study concludes with a generalization of the present environment at Magadi including discussions of lagoon chemistry, mantle gases in relation to the trona deposit, and biology of the hot springs. Several biologic samples were collected during the 2006 field season in an attempt to characterize the organisms that are commonly seen in the present Lake Magadi environment. Samples were selected to represent the different, distinctive forms that are found in the hotsprings. Each sample had it own distinctive growth habit, and analysis showed that each was formed by a different cyanobacterial. Actual algae was rare in the collected samples, and represented by a few scattered diatoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2003, a large landslide occurred along the Ontonagon River, located in the Upper Peninsula of Michigan, and adjacent to US-45 in Ontonagon County. The failure took place during the springtime, when the river reached a peak discharge that was the second highest on record. The volume of the slide has been estimated to be approximately 1,400,000 cubic yards. The colluvium blocked the river, forcing a new channel to be carved around the debris. The landslide consisted of a silt layer at its base, overlain by a coarsening upward sand sequence, and finally a varved glacio-lacustrine clay with sparse dropstone inclusions making up the upper section of hillside.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate compositionally monotonous, but energetically diverse, tephra samples from Pacaya to see if fossil bubbles in pyroclasts could reflect eruptive style. Bubble size distributions (BSD) were determined for four ash to lapilli size tephra samples using an adapted version of stereology conversion by Sahagian and Proussevitch (1998). Eruptions range from very weak to very energetic. Hundreds of ESEM BSEs images were processed throughout ImageJ software for a robust and statistically correct data set of vesicles (minimum 700 bubbles per sample). Qualitative textural analysis and major element chemical compositions were also executed. There is higher vesicularity for explosive pyroclasts and an inverse correlation between bubble number density (NV) and explosivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water management in the porous media of proton exchange membrane (PEM) fuel cells, catalyst layer and porous transport layers (PTL) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. The data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited to porosimetry. A new method and apparatus for measuring the percolation pressure in the catalyst layer has been developed. The experimental setup is similar to a Hele-Shaw experiment where samples are compressed and a fluid is injected into the sample. Pressure-Wetted Volume plots as well as Permeability plots for the catalyst layers were generated from the percolation testing. PTL samples were also characterizes using a Hele-Shaw method. Characterization for the PTLs was completed for the three states: new, conditioned and aged. This is represented in a Ce-t* plots, which show a large offset between new and aged samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the optical structures investigated for optical sensing purpose, a significant amount of research has been conducted on photonic crystal based sensors. A particular advantage of photonic crystal based sensors is that they show superior sensitivity for ultra-small volume sensing. In this study we investigate polarization changes in response to the changes in the cover index of magneto-optic active photonic band gap structures. One-dimensional photonic-band gap structures fabricated on iron garnet materials yield large polarization rotations at the band gap edges. The enhanced polarization effects serve as an excellent tool for chemical sensing showing high degree of sensitivity for photonic crystal cover refractive index changes. The one dimensional waveguide photonic crystals are fabricated on single-layer bismuth-substituted rare earth iron garnet films ((Bi, Y, Lu)3(Fe, Ga)5O12 ) grown by liquid phase epitaxy on gadolinium gallium garnet substrates. Band gaps have been observed where Bragg scattering conditions links forward-going fundamental waveguide modes to backscattered high-order waveguide modes. Large near-band-edge polarization rotations which increase progressively with backscattered-mode order have been experimentally demonstrated for multiple samples with different composition, film thickness and fabrication parameters. Experimental findings are supported by theoretical analysis of Bloch modes polarization states showing that large near stop-band edge rotations are induced by the magneto-photonic crystal. Theoretical and experimental analysis conducted on polarization rotation sensitivity to waveguide photonic crystal cover refractive index changes shows a monotonic enhancement of the rotation with cover index. The sensor is further developed for selective chemical sensing by employing Polypyrrole as the photonic crystal cover layer. Polypyrrole is one of the extensively studied conducting polymers for selective analyte detection. Successful detection of aqueous ammonia and methanol has been achieved with Polypyrrole deposited magneto-photonic crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smallholders in eastern Paraguay plant small stands of Eucalyptus grandis W. Hill ex Maiden intended for sale on the local market. Smallholders have been encouraged to plant E. grandis by local forestry extension agents who offer both forestry education and incentive programs. Smallholders who practice recommended forestry techniques geared towards growing large diameter trees of good form are financially rewarded by the local markets which desire saw log quality trees. The question was posed, are smallholders engaging in recommended silvicultural practices and producing reasonable volume yields? It was hypothesized that smallholders, having received forestry education and having financial incentives from the local market, would engage in silvicultural practices resulting in trees of good form and volume yields that were reasonable for the local climate and soil characteristics. Yield volume results from this study support this hypothesis. Mean volume yield was estimated at 70 cubic meters per hectare at age four and 225 cubic meters per hectare at age eight. These volume yields compare favorably to volume yields from other studies of E. grandis grown in similar climates, with similar stocking levels and site qualities.