3 resultados para joint development zones
em Digital Commons - Michigan Tech
Resumo:
This dissertation presents an effective quasi one-dimensional (1-D) computational simulation tool and a full two-dimensional (2-D) computational simulation methodology for steady annular/stratified internal condensing flows of pure vapor. These simulation tools are used to investigate internal condensing flows in both gravity as well as shear driven environments. Through accurate numerical simulations of the full two dimensional governing equations, results for laminar/laminar condensing flows inside mm-scale ducts are presented. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady (and unsteady flows). Moreover, a novel 1-D solution technique, capable of simulating condensing flows inside rectangular and circular ducts with different thermal boundary conditions is also presented. The results obtained from the 2-D scientific tool and 1-D engineering tool, are validated and synthesized with experimental results for gravity dominated flows inside vertical tube and inclined channel; and, also, for shear/pressure driven flows inside horizontal channels. Furthermore, these simulation tools are employed to demonstrate key differences of physics between gravity dominated and shear/pressure driven flows. A transition map that distinguishes shear driven, gravity driven, and “mixed” driven flow zones within the non-dimensional parameter space that govern these duct flows is presented along with the film thickness and heat transfer correlations that are valid in these zones. It has also been shown that internal condensing flows in a micro-meter scale duct experiences shear driven flow, even in different gravitational environments. The full 2-D steady computational tool has been employed to investigate the length of annularity. The result for a shear driven flow in a horizontal channel shows that in absence of any noise or pressure fluctuation at the inlet, the onset of non-annularity is partly due to insufficient shear at the liquid-vapor interface. This result is being further corroborated/investigated by R. R. Naik with the help of the unsteady simulation tool. The condensing flow results and flow physics understanding developed through these simulation tools will be instrumental in reliable design of modern micro-scale and spacebased thermal systems.
Resumo:
Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.
Resumo:
Skeletal muscle force evaluation is difficult to implement in a clinical setting. Muscle force is typically assessed through either manual muscle testing, isokinetic/isometric dynamometry, or electromyography (EMG). Manual muscle testing is a subjective evaluation of a patient’s ability to move voluntarily against gravity and to resist force applied by an examiner. Muscle testing using dynamometers adds accuracy by quantifying functional mechanical output of a limb. However, like manual muscle testing, dynamometry only provides estimates of the joint moment. EMG quantifies neuromuscular activation signals of individual muscles, and is used to infer muscle function. Despite the abundance of work performed to determine the degree to which EMG signals and muscle forces are related, the basic problem remains that EMG cannot provide a quantitative measurement of muscle force. Intramuscular pressure (IMP), the pressure applied by muscle fibers on interstitial fluid, has been considered as a correlate for muscle force. Numerous studies have shown that an approximately linear relationship exists between IMP and muscle force. A microsensor has recently been developed that is accurate, biocompatible, and appropriately sized for clinical use. While muscle force and pressure have been shown to be correlates, IMP has been shown to be non-uniform within the muscle. As it would not be practicable to experimentally evaluate how IMP is distributed, computational modeling may provide the means to fully evaluate IMP generation in muscles of various shapes and operating conditions. The work presented in this dissertation focuses on the development and validation of computational models of passive skeletal muscle and the evaluation of their performance for prediction of IMP. A transversly isotropic, hyperelastic, and nearly incompressible model will be evaluated along with a poroelastic model.