4 resultados para joint correspondence analysis

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vegetation communities affect carbon and nitrogen dynamics in the subsurface water of mineral wetlands through the quality of their litter, their uptake of nutrients, root exudation and their effects on redox potential. However, vegetation influence on subsurface nutrient dynamics is often overshadowed by the influences of hydrology, soils and geology on nutrient dynamics. The effects of vegetation communities on carbon and nitrogen dynamics are important to consider when managing land that may change vegetation type or quantity so that wetland ecosystem functions can be retained. This study was established to determine the magnitude of the influences and interaction of vegetation cover and hydrology, in the form of water table fluctuations, on carbon and nitrogen dynamics in a northern forested riparian wetland. Dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrate (NO3-) and ammonium (NH4+) concentrations were collected from a piezometer network in four different vegetation communities and were found to show complex responses to vegetation cover and water table fluctuations. Dissolved organic carbon, DIC, NO3- and NH4+ concentrations were influenced by forest vegetation cover. Both NO3- and NH4+ were also influenced by water table fluctuations. However, for DOC and NH4+ concentrations there appeared to be more complex interactions than were measured by this study. The results of canonical correspondence analysis (CCA) and analysis of variance (ANOVA) did not correspond in relationship to the significance of vegetation communities. Dissolved inorganic carbon was influenced by an interaction between vegetation cover and water table fluctuations. More hydrological information is needed to make stronger conclusions about the relationship between vegetation and hydrology in controlling carbon and nitrogen dynamics in a forested riparian wetland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.