5 resultados para inflation bousière

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used differential GPS measurements from a 13 station GPS network spanning the Santa Ana Volcano and Coatepeque Caldera to characterize the inter-eruptive activity and tectonic movements near these two active and potentially hazardous features. Caldera-forming events occurred from 70-40 ka and at Santa Ana/Izalco volcanoes eruptive activity occurred as recently as 2005. Twelve differential stations were surveyed for 1 to 2 hours on a monthly basis from February through September 2009 and tied to a centrally located continuous GPS station, which serves as the reference site for this volcanic network. Repeatabilities of the averages from 20-minute sessions taken over 20 hours or longer range from 2-11 mm in the horizontal (north and east) components of the inter-station baselines, suggesting a lower detection limit for the horizontal components of any short-term tectonic or volcanic deformation. Repeatabilities of the vertical baseline component range from 12-34 mm. Analysis of the precipitable water vapor in the troposphere suggests that tropospheric decorrelation as a function of baseline lengths and variable site elevations are the most likely sources of vertical error. Differential motions of the 12 sites relative to the continuous reference site reveal inflation from February through July at several sites surrounding the caldera with vertical displacements that range from 61 mm to 139 mm followed by a lower magnitude deflation event on 1.8-7.4 km-long baselines. Uplift rates for the inflationary period reach 300 mm/yr with 1σ uncertainties of +/- 26 – 119 mm. Only one other station outside the caldera exhibits a similar deformation trend, suggesting a localized source. The results suggest that the use of differential GPS measurements from short duration occupations over short baselines can be a useful monitoring tool at sub-tropical volcanoes and calderas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcanoes are the surficial expressions of complex pathways that vent magma and gasses generated deep in the Earth. Geophysical data record at least the partial history of magma and gas movement in the conduit and venting to the atmosphere. This work focuses on developing a more comprehensive understanding of explosive degassing at Fuego volcano, Guatemala through observations and analysis of geophysical data collected in 2005 – 2009. A pattern of eruptive activity was observed during 2005 – 2007 and quantified with seismic and infrasound, satellite thermal and gas measurements, and lava flow lengths. Eruptive styles are related to variable magma flux and accumulation of gas. Explosive degassing was recorded on broadband seismic and infrasound sensors in 2008 and 2009. Explosion energy partitioning between the ground and the atmosphere shows an increase in acoustic energy from 2008 to 2009, indicating a shift toward increased gas pressure in the conduit. Very-long-period (VLP) seismic signals are associated with the strongest explosions recorded in 2009 and waveform modeling in the 10 – 30 s band produces a best-fit source location 300 m west and 300 m below the summit crater. The calculated moment tensor indicates a volumetric source, which is modeled as a dike feeding a SW-dipping (35°) sill. The sill is the dominant component and its projection to the surface nearly intersects the summit crater. The deformation history of the sill is interpreted as: 1) an initial inflation due to pressurization, followed by 2) a rapid deflation as overpressure is explosively release, and finally 3) a reinflation as fresh magma flows into the sill and degasses. Tilt signals are derived from the horizontal components of the seismometer and show repetitive inflation deflation cycles with a 20 minute period coincident with strong explosions. These cycles represent the pressurization of the shallow conduit and explosive venting of overpressure that develops beneath a partially crystallized plug of magma. The energy released during the strong explosions has allowed for imaging of Fuego’s shallow conduit, which appears to have migrated west of the summit crater. In summary, Fuego is becoming more gas charged and its summit centered vent is shifting to the west - serious hazard consequences are likely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lastarria volcano (Chile) is located at the North-West margin of the `Lazufre' ground inflation signal (37x45 km²), constantly uplifting at a rate of ~2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.