4 resultados para individual zones of optimal functioning model
em Digital Commons - Michigan Tech
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
Eutrophication is a persistent problem in many fresh water lakes. Delay in lake recovery following reductions in external loading of phosphorus, the limiting nutrient in fresh water ecosystems, is often observed. Models have been created to assist with lake remediation efforts, however, the application of management tools to sediment diagenesis is often neglected due to conceptual and mathematical complexity. SED2K (Chapra et al. 2012) is proposed as a "middle way", offering engineering rigor while being accessible to users. An objective of this research is to further support the development and application SED2K for sediment phosphorus diagenesis and release to the water column of Onondaga Lake. Application of SED2K has been made to eutrophic Lake Alice in Minnesota. The more homogenous sediment characteristics of Lake Alice, compared with the industrially polluted sediment layers of Onondaga Lake, allowed for an invariant rate coefficient to be applied to describe first order decay kinetics of phosphorus. When a similar approach was attempted on Onondaga Lake an invariant rate coefficient failed to simulate the sediment phosphorus profile. Therefore, labile P was accounted for by progressive preservation after burial and a rate coefficient which gradual decreased with depth was applied. In this study, profile sediment samples were chemically extracted into five operationally-defined fractions: CaCO3-P, Fe/Al-P, Biogenic-P, Ca Mineral-P and Residual-P. Chemical fractionation data, from this study, showed that preservation is not the only mechanism by which phosphorus may be maintained in a non-reactive state in the profile. Sorption has been shown to contribute substantially to P burial within the profile. A new kinetic approach involving partitioning of P into process based fractions is applied here. Results from this approach indicate that labile P (Ca Mineral and Organic P) is contributing to internal P loading to Onondaga Lake, through diagenesis and diffusion to the water column, while the sorbed P fraction (Fe/Al-P and CaCO3-P) is remaining consistent. Sediment profile concentrations of labile and total phosphorus at time of deposition were also modeled and compared with current labile and total phosphorus, to quantify the extent to which remaining phosphorus which will continue to contribute to internal P loading and influence the trophic status of Onondaga Lake. Results presented here also allowed for estimation of the depth of the active sediment layer and the attendant response time as well as the sediment burden of labile P and associated efflux.