1 resultado para hypercyclic, cyclic vectors, topological vector spaces

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectrum sensing is currently one of the most challenging design problems in cognitive radio. A robust spectrum sensing technique is important in allowing implementation of a practical dynamic spectrum access in noisy and interference uncertain environments. In addition, it is desired to minimize the sensing time, while meeting the stringent cognitive radio application requirements. To cope with this challenge, cyclic spectrum sensing techniques have been proposed. However, such techniques require very high sampling rates in the wideband regime and thus are costly in hardware implementation and power consumption. In this thesis the concept of compressed sensing is applied to circumvent this problem by utilizing the sparsity of the two-dimensional cyclic spectrum. Compressive sampling is used to reduce the sampling rate and a recovery method is developed for re- constructing the sparse cyclic spectrum from the compressed samples. The reconstruction solution used, exploits the sparsity structure in the two-dimensional cyclic spectrum do-main which is different from conventional compressed sensing techniques for vector-form sparse signals. The entire wideband cyclic spectrum is reconstructed from sub-Nyquist-rate samples for simultaneous detection of multiple signal sources. After the cyclic spectrum recovery two methods are proposed to make spectral occupancy decisions from the recovered cyclic spectrum: a band-by-band multi-cycle detector which works for all modulation schemes, and a fast and simple thresholding method that works for Binary Phase Shift Keying (BPSK) signals only. In addition a method for recovering the power spectrum of stationary signals is developed as a special case. Simulation results demonstrate that the proposed spectrum sensing algorithms can significantly reduce sampling rate without sacrifcing performance. The robustness of the algorithms to the noise uncertainty of the wireless channel is also shown.