1 resultado para hyperbolic decomplexification
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (5)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (20)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (27)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Cochin University of Science & Technology (CUSAT), India (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- eScholarship Repository - University of California (2)
- Helda - Digital Repository of University of Helsinki (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (55)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (6)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (5)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (13)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (94)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Research Open Access Repository of the University of East London. (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (17)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (12)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (2)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Michigan (7)
- University of Queensland eSpace - Australia (8)
- University of Southampton, United Kingdom (32)
- University of Washington (4)
- WestminsterResearch - UK (1)
Resumo:
The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.