2 resultados para humor studies and clown

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Students are now involved in a vastly different textual landscape than many English scholars, one that relies on the “reading” and interpretation of multiple channels of simultaneous information. As a response to these new kinds of literate practices, my dissertation adds to the growing body of research on multimodal literacies, narratology in new media, and rhetoric through an examination of the place of video games in English teaching and research. I describe in this dissertation a hybridized theoretical basis for incorporating video games in English classrooms. This framework for textual analysis includes elements from narrative theory in literary study, rhetorical theory, and literacy theory, and when combined to account for the multiple modalities and complexities of gaming, can provide new insights about those theories and practices across all kinds of media, whether in written texts, films, or video games. In creating this framework, I hope to encourage students to view texts from a meta-level perspective, encompassing textual construction, use, and interpretation. In order to foster meta-level learning in an English course, I use specific theoretical frameworks from the fields of literary studies, narratology, film theory, aural theory, reader-response criticism, game studies, and multiliteracies theory to analyze a particular video game: World of Goo. These theoretical frameworks inform pedagogical practices used in the classroom for textual analysis of multiple media. Examining a video game from these perspectives, I use analytical methods from each, including close reading, explication, textual analysis, and individual elements of multiliteracies theory and pedagogy. In undertaking an in-depth analysis of World of Goo, I demonstrate the possibilities for classroom instruction with a complex blend of theories and pedagogies in English courses. This blend of theories and practices is meant to foster literacy learning across media, helping students develop metaknowledge of their own literate practices in multiple modes. Finally, I outline a design for a multiliteracies course that would allow English scholars to use video games along with other texts to interrogate texts as systems of information. In doing so, students can hopefully view and transform systems in their own lives as audiences, citizens, and workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A NOx reduction efficiency higher than 95% with NH3 slip less than 30 ppm is desirable for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems to meet the US EPA 2010 NOx standard and the 2014-2018 fuel consumption regulation. The SCR performance needs to be improved through experimental and modeling studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model with mass transfer, heat transfer and global reaction mechanisms was developed for a Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust conditions with NH3 maldistribution and aging effects, and the details are presented. SCR experimental data were collected for the model development, calibration and validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine experimental setup at Michigan Technological University (MTU) with a Cummins 2010 ISB engine. The model was calibrated separately to the reactor and engine data. The experimental setup, test procedures including a surrogate HD-FTP cycle developed for transient studies and the model calibration process are described. Differences in the model parameters were determined between the calibrations developed from the reactor and the engine data. It was determined that the SCR inlet NH3 maldistribution is one of the reasons causing the differences. The model calibrated to the engine data served as a basis for developing a reduced order SCR estimator model. The effect of the SCR inlet NO2/NOx ratio on the SCR performance was studied through simulations using the surrogate HD-FTP cycle. The cumulative outlet NOx and the overall NOx conversion efficiency of the cycle are highest with a NO2/NOx ratio of 0.5. The outlet NH3 is lowest for the NO2/NOx ratio greater than 0.6. A combined engine experimental and simulation study was performed to quantify the NH3 maldistribution at the SCR inlet and its effects on the SCR performance and kinetics. The uniformity index (UI) of the SCR inlet NH3 and NH3/NOx ratio (ANR) was determined to be below 0.8 for the production system. The UI was improved to 0.9 after installation of a swirl mixer into the SCR inlet cone. A multi-channel model was developed to simulate the maldistribution effects. The results showed that reducing the UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NOx reduction efficiency and 10-20 ppm increase in the NH3 slip. The simulations of the steady-state engine data with the multi-channel model showed that the NH3 maldistribution is a factor causing the differences in the calibrations developed from the engine and the reactor data. The Reactor experiments were performed at ORNL using a Spaci-IR technique to study the thermal aging effects. The test results showed that the thermal aging (at 800°C for 16 hours) caused a 30% reduction in the NH3 stored on the catalyst under NH3 saturation conditions and different axial concentration profiles under SCR reaction conditions. The kinetics analysis showed that the thermal aging caused a reduction in total NH3 storage capacity (94.6 compared to 138 gmol/m3), different NH3 adsorption/desorption properties and a decrease in activation energy and the pre-exponential factor for NH3 oxidation, standard and fast SCR reactions. Both reduction in the storage capability and the change in kinetics of the major reactions contributed to the change in the axial storage and concentration profiles observed from the experiments.