2 resultados para humid soil layer

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased demand for forest-derived biomass has resulted in changes in harvest intensities in Finland. Conventional stem-only harvest (CH) has to some extent been replaced with whole-tree harvest (WTH). The latter involves a greater removal of nutrients from the forest ecosystem, as all the above ground biomass is exported from the site. This has raised concerns that WTH could result in large changes in the nutrient dynamics of a forest stand and could eventually lower its site productivity. Little empirical data exists to support this assumption as only a limited number of studies have been conducted on the topic. A majority of these discuss the short-term effects, thus the long-term consequences remain unknown. The objective of this study was to compare differences in soil properties after CH and WTH in a fertile Norway spruce (Picea abies (L) Karst.) stand in Southern Finland. The site was clear-felled in August 2000 and spruce seedlings were planted in the following summer. Soil sampling in the form of systematic randomized sampling was carried out in May 2011. Changes in base saturation, cation exchange capacity, elemental pools (total and exchangeable) and acidity were studied in both organic and mineral horizons. The results indicate that WTH lowered effective cation exchange capacity and base saturation particularly in the humus layer. The pools of exchangeable Al and Fe were increased in the humus layer, whereas the amount of exchangeable Ca decreased in both layers. WTH also resulted in lower Ca/Al-ratios across the sampled layers. Treatment did not have a significant effect on pH, total pools of elements or on the C/N-ratio of the soil. The results suggest that although the stand possesses significant pools of nutrients at present, WTH, if continued, could have long-term effects on site productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.